УДК 621. 129

С.В. Елисеев*, В.Б. Кашуба, Ю.В. Ермошенко

РЫЧАЖНЫЕ СВЯЗИ В ЗАДАЧАХ ДИНАМИКИ ТРАНСПОРТНОЙ ПОДВЕСКИ

Рассматриваются задачи защиты объекта от вибраций с помощью рычажной виброзащитной системы. Особенность подхода состоит во введении дополнительной упругой связи межкоординатного типа. Предлагается методика построения математических моделей.

Ключевые слова: рычажная подвеска, виброзащитная система, динамическое гашение колебаний.

Задачам динамики транспортных подвесок посвящено достаточно большое число исследований [1÷3], в которых определялись условия эффективной защиты от вибрационных воздействий при соответствующем выборе значений параметров типовых элементов в виде пружин, демпферов и массоинерционных звеньев. Вместе с тем, ряд вопросов не получил детализированного рассмотрения, в частности, мало изученными остались вопросы учета в динамике систем рычажных связей между элементами.

В статье рассматриваются возможности учета в динамических процессах транспортных подвесок рычажных связей, которые реализуются специально вводимыми механизмами [4].

Предлагаемая подвеска, точнее, ее модель состоит (рис. 1) из объекта защиты массой M с моментом инерции I. Центр тяжести твердого тела расположен в т. A; в системе подвески задействованы два рычага с массами m_1 и m_2 ; их моменты инерции относительно т. A обозначаются соответственно через I_1 и I_2 . К такой схеме приводится тележка локомотива с двумя тяговыми двигателями [5]; центры тяжести рычагов A_1, B_1, A_2, B_2 обозначены через O_1 и O_2 соответственно.

Рис. 1. Расчетная схема тележки с двигателями с опорно-осевой подвеской

^{* -} автор, с которым следует вести переписку.

Положение центров тяжести определяется соответствующими длинами отрезков $l_1 \div l_6$. Между точками B_1 и B_2 рычагов действует элемент с передаточной функцией W. В простейшем случае это может быть пружина жесткостью k_0 , хотя W может иметь и более сложную структуру. Координаты y_1 и y_2 взяты в неподвижной системе координат. Предполагается также, что в точках A_1 и A_2 допускаются горизонтальные скольжения, что обеспечивает возможность вертикального движения центра тяжести объекта защиты (точка A). Для дальнейших расчетов примем, что

$$y = ay_1 + by_2, \varphi = (y_1 - y_2)c, a = \frac{l_2}{l_1 + l_2};$$
$$b = \frac{l_1}{l_1 + l_2}, \quad c = \frac{1}{l_1 + l_2}.$$

Для определения кинетической энергии системы на рис. 1 можно использовать теорему Кенига [6]. Учитывая особенности конструктивного построения транспортной подвески, наличие сочленений трех твердых тел, можно предположить достаточным кинетическую энергию системы представить как сумму кинетических энергий трех составных частей в движении относительно неподвижной системы координат, тогда

$$T = T_1 + T_2 + T_3. \tag{1}$$

В выражении (1) T_1 соответствует кинетической энергии тела массой m_1 , имеющего относительно центра тяжести (т. А) момент инерции I_1 :

$$T_1 = \frac{1}{2}M_1 \dot{y}^2 + \frac{1}{2}I_1 \dot{\phi}^2, \qquad (2)$$

где *у*-координата центра тяжести твердого тела (т.А), φ -угол поворота относительно центра тяжести. Кинетическая энергия подвижных блоков m_1I_1 и m_2I_2 определяется с учетом сложного характера их движения. Найдем скорость точки A_1 в неподвижной системе координат, используя схему распределения скоростей, показанную на рис. 2. Отметим, что более точным является представление контакта подвижного блока с вибрирующей поверхностью с учетом возможности горизонтального смещения. Однако на предварительной стадии рассмотрения будем полагать этот фактор, так же, как силы демпфирования колебаний, маловлияющим. Тогда

$$\dot{y}' = \frac{yl_4 + z_1l_3}{l_4 + l_3} = a_1\dot{y} + b_1\dot{z}_1, \qquad (3)$$

ГДЕ $a_1 = \frac{l_4}{l_3 + l_4}, \ b_1 = \frac{l_3}{l_3 + l_4}.$
 $\dot{y}' l_4$
 $\dot{y}' l_4$
 \dot{y}
 \dot{y}
 \dot{y}

Рис. 2. Схема распределения скоростей в подвижном блоке.

Соответственно, для второго блока получим

$$\dot{y}'' = a_2 \dot{y} + b_2 \dot{z}_2,$$
 (4)
 $l_5 \qquad l_6$

здесь
$$a_2 = \frac{l_5}{l_5 + l_6}; \ b_2 = \frac{l_6}{l_5 + l_6}.$$

Подвижные блоки участвуют также во вращательном движении относительно точки A. Параметры этого вращения определяются, как $y_1 - z_1$ и $y_2 - z_2$, что позволяет найти угловые скорости

$$\omega_{1} = \frac{d\varphi_{1}}{dt} = \frac{\dot{y}_{1} - \dot{z}_{1}}{l_{3} + l_{4}} = c_{1}(\dot{y} - \dot{z}_{1}), \quad (5)$$

$$\omega_2 = \frac{d\varphi_2}{dt} = \frac{\dot{y}_2 - \dot{z}_2}{l_5 + l_6} = c_2(\dot{y} - \dot{z}_2), \quad (6)$$

где $c_1 = \frac{1}{l_3 + l_4}$, $c_2 = \frac{1}{l_5 + l_6}$; при дальнейших расчетах принято, что $l_3 + l_4 = l_5 + l_6 = L_1$, 25 $l_1 + l_2 = L$. Более детализированный учет параметров предполагает, что $\varphi_1 = \varphi_{10} + \Delta \varphi_1$, а $\omega_1 = \frac{d(\Delta \varphi_1)}{dt}$, соответственно – $\omega_2 = \frac{d(\Delta \varphi_2)}{dt}$. При этом $\Delta \varphi_1$ и $\Delta \varphi_2$ рассматриваются как малые приращения углов поворота, полагая $\varphi_1 \approx \varphi_{10}$ и $\varphi_2 \approx \varphi_{20}$.

I. Кинетическая энергия рассматриваемой системы с учетом (2÷6) может быть определена выражением

$$T = \frac{1}{2}M\dot{y}^{2} + I\dot{\phi}^{2} + \frac{1}{2}M_{1}(\dot{y}')^{2} + \frac{1}{2}I_{1}\dot{\phi}_{1}^{2} + \frac{1}{2}M_{2}(\dot{y}'')^{2} + \frac{1}{2}I_{2}\dot{\phi}_{2}^{2}.$$
(7)

Потенциальная энергия системы определяется с учетом деформации упругих элементов

$$\Pi = \frac{1}{2}k_{1}(y_{1} - z_{1})^{2} + \frac{1}{2}k_{2}(y_{2} - z_{2}) + \frac{1}{2}k_{3}c_{3}^{2}(\varphi_{1} - \varphi_{2})^{2}, (8)$$

$$(a_{3} < 1)$$

где $c_3 = a_3 l_0$; а a_3 – коэффициент, учитывающий геометрические особенности расположения рычагов $A_1 B_1$ и $A_2 B_2$, принимаются в первом приближении такими, что

Воспользуемся для вывода дифференциальных уравнений движения формализмом Лагранжа и запишем ряд необходимых соотношений в системе координат ϕ , *y*, полагая, что

$$T = \frac{1}{2}M\dot{y}^{2} + \frac{1}{2}I\dot{\phi}^{2} + \frac{1}{2}M_{1}(a_{1}\dot{y} + b_{1}\dot{z}_{1})^{2} + \frac{1}{2}M_{2}(a_{2}\dot{y} + b_{2}\dot{z}_{2})^{2} + (10) + \frac{1}{2}I_{1}c_{1}^{2}(\dot{y} - \dot{z}_{1})^{2} + \frac{1}{2}I_{2}c_{2}^{2}(\dot{y} - \dot{z}_{2})^{2}.$$

Тогда

$$\begin{aligned} \frac{\partial T}{\partial y} &= M \dot{y} + M_1 a_1^2 \dot{y} + M_1 a_1 b_1 \dot{z}_1 + \\ &+ M_2 a_2^2 \dot{y} + M_2 a_2 b_2 \dot{z}_2 + \\ + I_1 c_1^2 \dot{y} - I_1 c_1^2 \dot{z}_1 + \frac{1}{2} I_2 c_2^2 \dot{y} - \frac{1}{2} I_2 c_2^2 \dot{z}_2. \end{aligned}$$
(11)
$$\frac{\partial T}{\partial \varphi} &= I \dot{\varphi}. \end{aligned}$$

Приведем выражение (8) к виду

$$\Pi = \frac{1}{2} k_1 \Big[(y - l_1 \varphi) - z_1 \Big]^2 + \frac{1}{2} k_2 \Big[(y + l_2 \varphi) - z_2 \Big]^2 + \frac{1}{2} k_3 c_3^2 \Big[c_1 (y - l_1 \varphi - z_1) - c_2 (y + l_2 \varphi - z_2) \Big]^2 = (12)$$

$$= \frac{1}{2} k_1 \Big[(y - l_1 \varphi)^2 - 2(y - l_1 \varphi) z_1 + z_1^2 \Big] + \frac{1}{2} k_2 \Big[(y + l_2 \varphi)^2 - 2(y + l_2 \varphi) z_2 + z_2^2 \Big] + \frac{1}{2} k_3 c_3^2 \Big[y (c_1 - c_2) - \varphi (c_1 l_1 - c_2 l_2) + c_2 z_2 - c_1 z_1 \Big]^2,$$

откуда

$$\frac{\partial \Pi}{\partial y} = k_1 y - k_1 l_1 \varphi - k_1 z_1 + k_2 y + k_2 l_2 \varphi - k_2 z_2 + k_3 c_3 (c_1 - c_2)^2 y - k_3 c_3 (c_1 - c_2) \times (c_1 l_1 - c_2 l_2) \varphi - k_3 c_3 (c_1 - c_2) (c_2 z_2 - c_1 z_1);$$

$$\frac{\partial \Pi}{\partial \varphi} = k_1 l_1^2 \varphi - k_1 l_1 y + k_1 l_1 z_1 + k_2 l_2^2 \varphi + k_2 l_2 \varphi - k_2 l_2 z_2 + \varphi k_3 c_3^2 (c_1 l_1 - c_2 l_2)^2 - k_3 c_3^2 (c_1 - c_2) \times (13) \times (c_1 l_1 - c_2 l_2) y - k_3 c_3^2 (c_1 l_1 - c_2 l_2) (c_2 z_2 - c_1 z_1).$$

Используя (8)÷(13), получим систему дифференциальных уравнений движения в системе координат *у*, *φ*.

$$\begin{split} \ddot{y}(M + M_{1}a_{1}^{2} + M_{2}a_{2}^{2} + I_{1}c_{1}^{2} + \\ + I_{2}c_{2}^{2}) + y \Big[k_{1} + k_{2} + k_{3}^{2}(c_{1} - c_{2})^{2}\Big] + \\ + \varphi \Big[k_{1}l_{1} - k_{2}l_{2} - k_{3}c_{3}^{2}(c_{1} - c_{2})(c_{1}l_{1} - c_{2}l_{2})\Big] = (14) \\ &= \ddot{z}_{1}(I_{1}c_{1}^{2} - M_{1}a_{1}b_{1}) + \ddot{z}_{2}(I_{2}c_{2}^{2} - M_{2}a_{2}b_{2}) + \\ &+ z_{1}\Big[k_{1} - k_{3}c_{3}^{2}(c_{1} - c_{2})c_{1}z_{1} + z_{2}\Big] + \\ &+ k_{2} + k_{3}c_{3}^{2}(c_{1} - c_{2})c_{2}z_{2}; \\ \ddot{\varphi}I + \varphi \Big[k_{1}l_{1}^{2} + k_{2}l_{2}^{2} + k_{3}c_{3}^{2}(c_{1}l_{1} - c_{2}l_{2})^{2}\Big] + \\ &+ y\Big[-k_{1}l_{1} + k_{2}l_{2} - k_{3}c_{3}^{2}(c_{1} - c_{2})(c_{1}l_{1} - c_{2}l_{2})\Big] = (15) \\ &= z_{1}\Big[-k_{1}l_{1} - c_{1}k_{3}c_{3}^{2}(c_{1} - c_{2})(c_{1}l_{1} - c_{2}l_{2})\Big] + \\ &+ z_{2}\Big[k_{2}l_{2} + c_{2}k_{3}c_{3}^{2}(c_{1}l_{1} - c_{2}l_{2})\Big]. \end{split}$$

26

Коэффициенты уравнений (14), (15) приведены в таблице 1.

Таблица 1

Коэффициенты системы дифференциальных уравнений (14)÷(15) в координатах у, ф

a_{11}	<i>a</i> ₁₂
$(M + M_1a_1^2 + M_2b_1^2 + I_1c_1^2 + I_2c_2^2)p^2 + k_1 + k_2 + k_3c_3^2(c_1 - c_2)^2$	$k_1 l_1 - k_2 l_2 - k_3 c_3^2 (c_1 - c_2) (c_1 l_1 - c_2 l_2)$
a_{21}	a ₂₂
$k_1 l_1 - k_2 l_2 - k_3 c_3^2 (c_1 - c_2)(c_1 l_1 - c_2 l_2)$	$Ip^{2} + k_{1}l_{1}^{2} + k_{2}l_{2}^{2} + k_{3}c_{3}^{2}(c_{1}l_{1} - c_{2}l_{2})^{2}$
Q_1	Q_2
$\ddot{z}_1(I_1c_1^2 - M_1a_1b_1) + z_1\left[k_1 - k_3c_3^2c_1(c_1 - c_2)\right] +$	$z_1 \Big[-k_1 l_1 - c_1 k_3 c_3^2 (c_1 l_1 - c_2 l_2) \Big] +$
$+\ddot{z}_{2}\left[I_{2}c_{2}^{2}-M_{2}a_{2}b_{2}\right]+z_{2}\left[k_{2}+k_{3}c_{3}^{2}c_{2}(c_{1}-c_{2})\right].$	$+z_2 \left[k_2 l_2 + c_2 k_3 c_3^2 (c_1 l_1 - c_2 l_2) \right]$

Примечание: Q_1, Q_2 – обобщенные силы по координатам у и ϕ соответственно.

Структурная схема системы приведена на рис. 3. Ее характерной особенностью является то, что связи между парциальными системами носят упругий характер. В отличие от традиционных представлений [6], условия «зануления» перекрестных связей определяются не только рычажными связями, которые определяются разнесением точек крепления пружин k_1 и k_2 , но и параметрами рычажных механизмов c_1 и c_2 .

Условия развязки колебаний могут быть записаны в виде

$$k_1 l_1 - k_2 l_2 - k_3 (c_1 - c_2) (c_1 l_1 - c_2 l_2) k_3 c_3^2 = 0$$
 (16)
По правилам Крамера [7] найдем, что
 $Q_1 a_{22} - Q_2 a_{12}$

$$y = \frac{Q_1 a_{22} - Q_2 a_{12}}{a_{11} a_{22} - a_{12}^2},$$
 (16')

$$\varphi = \frac{Q_2 a_{11} - Q_1 a_{21}}{a_{11} a_{22} - a_{12}^2} \,. \tag{16"}$$

Используя табл. 1 и структурную схему (рис. 3), найдем, что (при $z_1 = z_2 = z$):

$$W_{1} = \frac{\overline{y}}{\overline{z}} = \frac{\left[p^{2}(Ia^{2} + I_{2}c^{2} - M_{1}a_{1}b_{1} - M_{2}a_{2}b_{2}) + a_{11}a_{22} - a_{12}^{2} + a_{12}a_{2}^{2} +$$

II. Если использовать систему координат y_1, y_2 , то

...

$$T = \frac{1}{2}M(\dot{y}_{1}a + \dot{y}_{2}b)^{2} + \frac{1}{2}Ic^{2}(\dot{y}_{1} - \dot{y}_{2})^{2} + \frac{1}{2}M_{1}[a_{1}(y_{1}a + \dot{y}_{2}b) + b_{1}\dot{z}_{1})]^{2} + \frac{1}{2}M_{2}[a_{2}(\dot{y}_{1}a_{1} + \dot{y}_{2}b) + b_{2}\dot{z}]_{2}^{2} + \frac{1}{2}I_{1}c_{1}^{2}[(\dot{y}_{1}a + \dot{y}_{2}b - \dot{z}_{1})]^{2} + \frac{1}{2}I_{2}c_{2}^{2}(\dot{y}_{1}a + \dot{y}_{2}b - \dot{z}_{2})^{2}.$$
(17)

Запишем необходимые вспомогательные соотношения в виде

$$\begin{aligned} \frac{\partial T}{\partial \dot{y}_{1}} &= Ma^{2} \dot{y}_{1} + Mab \dot{y}_{2} + Ic^{2} \dot{y}_{1} - Ic^{2} \dot{y}_{2} + M_{1}(aa_{1})^{2} \dot{y}_{1} + \\ &+ M_{1}a_{1}^{2}ab y_{2} + M_{1}aa_{1}b_{1}z_{1} + M_{2}(a_{2}a)^{2} \dot{y}_{1} + M_{2}a_{2}^{2}ab \dot{y}_{2} + (18) \\ &+ M_{2}a_{2}ab_{2}\dot{z}_{2} + I_{1}c_{1}^{2}a^{2} \dot{y}_{1} + \\ &+ I_{1}c_{1}^{2}ab \dot{y}_{2} - I_{1}c_{1}^{2}a \dot{z}_{1} + I_{2}c_{2}^{2}a^{2} \dot{y}_{1} + \\ &+ I_{2}c_{2}^{2} y_{2}ab - Ic_{2}^{2}a \dot{z}_{2}. \end{aligned}$$

$$\frac{\partial T}{\partial y_2} = Mb^2 \dot{y}_2 + Mab \dot{y}_1 + Ic^2 \dot{y}_2 - -Ic^2 \dot{y}_1 + M_1(a_1b)^2 \dot{y}_2 + M_1a_1^2ab \dot{y}_1 + + M_1a_1b_1b \dot{z}_1 + M_2(a_2b)^2 y_2 + M_2a_2^2ab y_1 +$$
(19)
+ $M_2a_2b_2b z_2 + I_1c_1^2b^2 \dot{y}_2 + I_2c_2^2ab \dot{y}_1 - -I_1c_1^2b \dot{z}_1 + I_2c_2b^2 \dot{y}_2 + I_2c_2^2 y_1ab - I_2c_2^2b \dot{z}_2.$
В свою очередь,
 $\left[y[a(c_1 - c_2) - c(c_1 - c_2b_1)] + y \right]$

$$\Pi = \frac{1}{2} k_3 c_3^2 \begin{cases} y[a(c_1 - c_2) - c(c_1 l_1 - c_2 l_2)] + \\ + y_2 \begin{bmatrix} b(c_1 - c_2) + \\ + c(c_1 l_1 - c_2 l_2) + (c_2 z_2 - c_1 z_1) \end{bmatrix} \end{cases}$$
(20)
$$\Pi = \frac{1}{2} k_3 c_3^2 \left[(y_1 r_1 + y_2 r_2) + (c_2 z_2 - c_1 z_1) \right] y_1^2 r_1^2 + \\ + 2r_1 r_2 y_1 y_2 + r_2^2 y_2^2 + 2(y_1 r_1 + y_2 r_2)(c_2 z_2 - c_1 z_1).$$

Сделаем ряд промежуточных выкладок:

$$\begin{aligned} \frac{\partial \Pi}{\partial y_1} &= k_1 y_1 - k_1 z_1 + k_3 c_3^2 r_1^2 y_1 + k_3 c_3^2 r_1 r_2 y_2 + \\ &+ k_3 c_3^2 r_1 (c_2 z_2 - c_1 z_1). \end{aligned} \tag{21} \\ \frac{\partial \Pi}{\partial y_2} &= k_2 y_2 - k_2 z_2 + k_3 c_3 r_2^2 y_2 + k_3 c_3^2 r_1 r_2 y_1 + \\ &+ k_3 c_3^2 r_2 (c_2 z_2 - c_1 z_1). \end{aligned}$$

Запишем дифференциальные уравнения движения в системе координат y_1 и

$$y_{2} c y = tom (17) \div (21)$$

$$\ddot{y}_{1} \begin{cases} Ma^{2} + Ic^{2} + M_{1}(aa_{1})^{2} + \\ +M_{2}(a_{2}a)^{2} + I_{1}c_{1}^{2}a^{2} + I_{2}c_{2}^{2}a^{2} \end{cases} + \\
+ \ddot{y}_{2}(Mab - Ic^{2} + M_{1}a_{1}^{2}ab + M_{2}a_{2}^{2}ab + \\ +I_{1}c_{1}^{2}ab + I_{2}c_{2}^{2}ab) + y(k_{1} + k_{3}c_{3}^{2}r_{1}^{2}) + \\
+ y_{2}(k_{3}c_{3}^{2}r_{1}r_{2}) = z_{1}(k_{1} + k_{3}c_{3}^{2}r_{1}c_{1} + \\
+ \ddot{z}_{1}(-M_{1}aa_{1}b_{1} + I_{1}c_{1}^{2}a) - k_{3}c_{3}^{2}r_{2}c_{2}z_{2} + \\
+ (-\ddot{z}_{2}M_{2}a_{2}ab_{2} + \ddot{z}I_{2}c_{2}^{2}a). \end{cases}$$
(22)

Здесь
$$r_1 = a(c_1 - c_2) - c(c_1l_1 - c_2l_2), r_2 = b(c_1 - c_2) + c(c_1l_1 - c_2l_2).$$

 $\ddot{y}_2 \begin{bmatrix} Mb^2 + Ic^2 + M_1(a_1b)^2 + \\ + M_2(a_2b)^2 + I_1c_1^2b^2 + I_2c_2^2b^2 \end{bmatrix} + \ddot{y}_1(Mab - Ic^2 + M_1a_1^2ab + M_2a_2^2ab + I_1c_1^2ab + I_2c_2^2ab) + \\ + y_2(k_2 + k_3c_3^2r_2^2) + y_1(k_3c_3^2r_1r_2y_1) = \\ = -Ma_1b_1b\ddot{z}_1 + I_1c_1^2b\ddot{z}_1 + k_3c_3^2r_2c_1z_1 + \\ + \ddot{z}_2(-M_2a_2bb_2 + I_2c_2^2b) + z_2(k_2 - k_3c_3^2r_2c_2).$
(23)

28

Таблица 2

<i>a</i> ₁₁	<i>a</i> ₁₂
$\begin{bmatrix} p^{2} \begin{bmatrix} Ma^{2} + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_{1}(aa_{1})^{2} + \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} max + Ic^{2} + M_$	$p^{2} \left[Mab - Ic^{2} + M_{1}a_{1}^{2}ab + \right] +$
$\left[+M_2(aa_2)^2 + I_1c_1^2a^2 + I_2c_2^2a^2 \right]$	$\left[+M_2a_2^2ab+I_1c_1^2ab+I_2c^2ab\right]$
$+y_1(k_1+k_3c_3^2r_1^2)$	$+y_2(k_3c_3^2r_1r_2)$
a ₂₁	a ₂₂
$p^{2} \begin{bmatrix} Mab - Ic^{2} + M_{1}a_{1}^{2}ab + \\ +M_{2}a_{2}^{2}ab + I_{1}c_{1}^{2}ab + I_{2}c^{2}ab \end{bmatrix} + k_{3}c_{3}^{2}r_{1}r_{2}$	$p^{2} \begin{bmatrix} Mb^{2} + Ic^{2} + M_{1}(a_{1}b)^{2} + \\ +M_{2}(a_{2}b)^{2} + I_{1}c_{1}^{2}b^{2} + I_{2}c_{2}^{2}b^{2} \end{bmatrix} + \\ +k_{2}k_{3}c_{3}^{2}r_{2}^{2}$
Q'_1	Q'_2
$\boxed{\frac{\overline{z_1} \left[(-M_1 a a_1 b_1 + I_1 c_1^2 a) p^2 + \\ +k_1 + k_3 c_3^2 r_1 c_1 \right]}_{+}}$	$\boxed{\frac{\overline{z_{l}}\left[(-M_{1}a_{1}b_{1}b+I_{1}c_{1}^{2}b)p^{2}+\right]}{+k_{3}c_{3}^{2}r_{2}c_{1}}} + $
$+\overline{z}_{2}\left[\left(-M_{2}a_{2}b_{2}a+I_{2}c_{2}^{2}a\right)p^{2}-k_{3}c_{3}^{2}r_{1}c_{2}\right]$	$+\overline{z}_{2}\left[\left(-M_{2}a_{2}b_{2}b+I_{2}c_{2}^{2}b\right)p^{2}+k_{2}-k_{3}c_{3}^{2}r_{1}c_{2}\right]$

Коэффициенты системы дифференциальных уравнений (22), (23) в координатах y₁, y₂

Примечание: Q'_1, Q'_2 – обобщенные силы по координатам y_1 и y_2 соответственно.

Рис. 4. Структурная схема системы в координатах y_1, y_2 .

Из анализа структурной схемы системы в координатах y_1 и y_2 (рис. 4) следует, что в системе возможно «зануление» связей между парциальными системами y_1 и y_2 на частоте

$$\omega^{2} = \frac{k_{3}c_{3}^{2} \cdot r_{1}r_{2}}{Mab - Ic^{2} + M_{1}a_{1}^{2}ab + M_{2}a_{2}^{2}ab + I_{1}c_{1}^{2}ab + I_{2}c_{2}^{2}ab} = (24)$$
$$= \frac{k_{3}c_{3}^{2}r_{1}r_{2}}{ab(M + M_{1}a^{2} + M_{2}a^{2} + I_{1}c_{1}^{2} + I_{2}c_{2}^{2}) - Ic^{2}}.$$

Что касается общего вида передаточной функции (24), то при $z_1 = z_2$ получим

$$W_1(p) = \frac{\overline{y}_1}{z} = \frac{d_1 p^4 + d_2 p^2 + d_3}{n_1 p^4 + n_2 p^2 + n_3},$$
 (25)

где коэффициенты $d_1 \div d_3$, $n_1 \div n_3 -$ определяются параметрами системы (22), (23).

Передаточная функция $W_2(p) = \frac{\overline{y}_2}{\overline{z}_2}$

имеет такой же вид, однако коэффициенты числителя будут другими. Для оценки устойчивости системы необходимо исследовать характеристическое уравнение (знаменатель (25)). В соответствии с критериями Рауса-Гурвица, все члены уравнения должны быть положительными. Для получения частот собственных колебаний необходимо решить характеристическое уравнение, которое в данном случае сводится к биквадратному частотному уравнению. В общем случае корни биквадратного уравнения будут действительными положительными числами, откуда могут быть найдены соответствующие частоты собственных колебаний. Отметим, что в данном случае числитель и знаменатель передаточной функции имеют один порядок, что предполагает следующие особенности системы: при $p \rightarrow 0$

 $W_1(p) = \frac{d_3}{n_3}; \quad W_2(p) = \frac{d'_3}{n'_3},$ (26)

где d'_3 и n'_3 – коэффициенты, определяемые так же, как n_3 и d_3 .

В свою очередь, при $p \to \infty$

$$W_1(p) = \frac{d_1}{n_1}; \quad W_2(p) = \frac{d'_1}{n'_1}.$$
 (27)

Поскольку частотное уравнение числителя передаточной функции имеет 4-й порядок, то можно ожидать в системе координат y_1 и y_2 появления двух динамических режимов по каждой координате. При определенных условиях можно полагать выполнение соотношения $\overline{y}_1 = \overline{y}_2, \qquad (28)$

что приводит к специфичному виду движения объекта защиты при отсутствии угловых колебаний ($\phi = 0$).

В системе координат у и φ при движении по координате у существует два режима динамического гашения, а при движении по φ – только один. При совпадении частот режимов динамического гашения по у и φ , что обеспечивается соответствующим выбором параметров при $z_1 = z_2 = z$, возможна ситуация, когда объект защиты становится неподвижным.

Таким образом, введение рычажных связей в схему транспортной подвески может существенно расширить спектр динамических свойств подвески и в случае построения системы управления параметрами системы обеспечить режимы частичного или полного гашения воздействий со стороны основания на определенных частотах, что определяется выражением (16), (24)÷(27).

Литература

1. Хоменко А. П. Динамика и управление в задачах виброзащиты и виброизоляции подвижных объектов. Иркутск : ИГУ, 2000. 293 с.

2. Ротенберг Р. В. Подвеска автомобиля. М.: Машиностроение, 1972. 372 с.

3. Елисеев С. В., Волков Л. Н., Кухаренко В. П. Динамика механических систем с дополнительными связями. Новосибирск : Наука, Сиб. отд-ние, 1990. 312 с.

4. Рычажные связи в задачах динамики механических колебательных систем. Теоретические аспекты / С. В. Елисеев [и др.]. Иркутск, 2009. 159 с. Деп. в ВИ-НИТИ 27.11.09, № 737-В 2009.

5. Ермошенко Ю.В. Управление вибрационным состоянием в задачах виброзащиты и виброизоляции : дис. ... канд. техн. наук. Иркутск, 2002. 185 с. Лойцянский Л.Г., Лурье А. И. Курс теоретической механики. Т. 2 : Динамика.
 М.: Наука. 1968. 630 с. 7. Дружинский И. А. Механические цепи. М. : Машиностроение, 1977. 240 с.

УДК 69.002.51.192:621.225.2

Д.Ю. Кобзов*, В.А. Тарасов, В.В. Жмуров

ОЦЕНКА ПРОДОЛЬНОЙ ЖЕСТКОСТИ ГИДРОЦИЛИНДРА

Предлагается методика оценки продольной жесткости гидроцилиндра с односторонним штоком, учитывающая упругость рабочей жидкости, радиальной деформации корпуса гидроцилиндра, его поперечной деформации и продольной упругости штока.

Ключевые слова: гидроцилиндр, деформация, жесткость, упругость.

Исследование динамики машин с гидроприводом, в частности динамики одноковшовых гидравлических экскаваторов, осуществляется путем составления их динамических и математических моделей, в которых наименее исследованными являются упругие характеристики гидроцилиндров с односторонним штоком для привода рабочего оборудования [1, 2], вариант оценки которых предлагается ниже.

В соответствии с работами [1, 2], жесткость собственно гидроцилиндра без гидромагистралей ограничивалась лишь учетом упругой деформации рабочей жидкости в результате сжатия в его поршневой (штоковой) полости и описывалась выражением

$$C_1 = \frac{E_{\kappa} F_n^2}{V_{\kappa}},\tag{1}$$

где: E_{π} — модуль упругости жидкости; F_n — площадь поперечного сечения; V_{π} — объем жидкости в поршневой полости гидроцилиндра.

С учетом расчетной схемы гидроцилиндра (рис. 1) запись (1) имеет вид

$$C_{1} = \frac{E_{\pi}\pi D_{1}^{2}}{4[l_{3} + (l_{0} + z) - (l_{1} + l_{2}) - l_{5}]},$$

где: D_1 – диаметр поршня; l_0 , l_1 … l_5 – линейные размеры гидроцилиндра; z – ход поршня.

Однако в результате продольнопоперечного функционального нагружения гидроцилиндра в процессе работы у него возникают как продольная, так и поперечная деформации, которые необходимо учитывать при статических и динамических расчетах.

Отсюда, с целью повышения достоверности оценки упругих характеристик гидроцилиндра, интересующую в данном случае его полную продольную деформацию целесообразно представлять суммой следующих характеристик [3]: упругой деформации рабочей жидкости в результате ее сжатия, усадки рабочей жидкости вследствие радиальной деформации под давлением корпуса гидроцилиндра, упругой продольной деформации штока как стержня и усадки гидроцилиндра в результате его поперечного прогиба.

Приведенную (полную) жесткость C_{Σ} гидроцилиндра следует описывать с учетом перечисленных характеристик при известном толкающем усилии на штоке гидроцилиндра, с оценкой доли влияния каждой жесткости на величину полной.

^{* -} автор, с которым следует вести переписку.