УДК 621.311

В.П. Закарюкин, А.В. Крюков*

МОДЕЛИРОВАНИЕ СЛОЖНЫХ ПОВРЕЖДЕНИЙ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ НА ОСНОВЕ ФАЗНЫХ КООРДИНАТ

В статье представлены результаты исследований, направленных на создание эффективных алгоритмов расчета сложнонесимметричных режимов электроэнергетических систем в фазных координатах с применением разработанного авторами программного комплекса Flow3. Показаны примеры расчетов режимов при многократных коротких замыканиях и одновременных обрывах фаз.

Ключевые слова: электроэнергетические системы, фазные координаты, несимметричные режимы.

Введение. Для расчетов несимметричных режимов в трехфазных электрических системах обычно применяют метод симметричных составляющих. Этот метод, однако, пригоден только при небольшом количестве несложных несимметрий. Большинство элементов электроэнергетических систем (ЭЭС) отличаются различием пофазных параметров, что приводит к погрешностям при их однолинейном моделировании и усложняет принятие обоснованных технических решений при проектировании и эксплуатации. Наиболее эффективно задача расчета режимов несимметричных ЭЭС может быть решена на основе применения фазных координат. Основную трудность при этом создают элементы с взаимоиндуктивными связями, к которым относятся многопроводные линии и трансформаторы. В работах [1, 2] предложен единый методологический подход к построению моделей таких элементов, реализуемых решетчатыми схемами замещения в виде наборов RLC-элементов, соединенных по схеме полного графа. Этот подход открывает большие возможности для расчетов режимов ЭЭС с разнообразными несимметриями. При этом стирается различие в моделировании однофазных и трехфазных цепей и появляется возможность расчета совмещенных систем. В данной статье рассмотрен ряд примеров расчетов трехфазных систем с достаточно сложными несимметриями. В целях проверки

адекватности моделирования примеры взяты из монографии по расчету сложных повреждений в ЭЭС [3].

Методика моделирования. Для расчетов сложнонесимметричных режимов использован программный комплекс Flow3 [4], в котором реализованы основные идеи работ [1, 2]. Программный комплекс обеспечивает совместное моделирование любых применяемых на практике однофазных и трехфазных электрических сетей с решением следующих задач:

•моделирование решетчатыми схемами замещения воздушных и кабельных линий различного конструктивного исполнения с учетом пространственного расположения проводов, а также трансформаторов с любыми приемлемыми на практике схемами соединения обмоток;

•графическое построение расчетной схемы на экране монитора с использованием моделей различных элементов ЭЭС из базы данных;

•расчет симметричных и несимметричных установившихся режимов электрических сетей с автоматическим расчетом электромагнитного влияния линий;

•расчеты потерь мощности в отдельных элементах и их группах;

•определение неполнофазных режимов; вычисление токов, напряжений и потоков мощности при сложнонесимметричных повреждениях в электрической сети;

•расчет установившихся токов симмет-

ричных и несимметричных коротких замыканий (КЗ);

•определение показателей качества электрической энергии для синусоидального режима.

Короткие замыкания с одновременным обрывом фаз. В схеме, приведенной на рис. 1, рассматриваются однофазные замыкания и одновременные разрывы фаз выключателем В1, имеющим пофазное управление. Перед возникновением короткого замыкания система С потребляет мощность 220+*j*44 МВ·А с поддержанием уровня напряжения 115 кВ.

Рис. 1. Короткое замыкание с обрывом фазы.

Для схемы на рис. 1 с помощью программного комплекса Flow3 решены следующие задачи.

1. Определение нагрузочного режима при условии фиксации напряжения на шинах С и задании модуля и фазы ЭДС генератора.

2. Расчет сложных повреждений двух видов: однофазное КЗ фазы А в точке, расположенной на расстоянии 35 км от трансформатора Т, и разрыв этой фазы выключателем В1; однофазное КЗ фазы С в той же точке с одновременным разрывом фазы A (рис. 2).

Рис. 2. Вариант однофазного короткого замыкания.

На рис. 3 приведена расчетная схема для нагрузочного режима, сформированная средствами комплекса Flow3. В табл. 1 приводятся результаты расчета в сопоставлении с данными, представленными в работе [3]. Анализ полученных результатов показывает, что максимальное расхождение в модулях напряжений не превышает 4 %, что связано с учетом емкостной генерации линии в комплексе Flow3. Такой учет в методе симметричных составляющих, используемом в работе [3], не выполняется, так как приводит к значительному усложнению изначально непростого алгоритма расчета.

В табл. 2 приведены результаты расчета короткого замыкания фазы А на землю с разрывом фазы А выключателем В1. Здесь также сказывается емкостная генерация линии, вклад которой возрастает с уменьшением тока ЛЭП. В табл. 3 сведены результаты расчета короткого замыкания фазы С на землю с одновременным разрывом фазы А выключателем В1. Такие расчеты в работе [3] не рассмотрены, что, по-видимому, связано, с дополнительными сложностями формирования комплексной схемы замещения.

Рис. 3. Расчетная схема комплекса Flow3.

Таблиг	(a 1

Параметр	Модуль по [3]	Модуль Flow3	Разница, %
Ток линии у В1, А	621	603	2,9
Ток линии у В2, А	621	617	0,6
Напряжение фазы А у В1, кВ	136	141	-3,7
Напряжение фазы А у В2, кВ	123,8	123,8	0,0

Нагрузочный режим электрической системы

Пороткое заможитие физог 21 с обновременноги ее ризровом воключителем D1						
Параметр	Модуль по [3]	Модуль Flow3	Разница, %			
Ток в месте замыкания, А	1593	1510	5,2			
Ток фазы В у В1, А	811	779	3,9			
Ток фазы С у В1, А	396	360	9,1			
Ток фазы В у В2, А	811	783	3,5			
Ток фазы С у В2, А	396	371	6,3			
Напряжение фазы А на В1, кВ	169	172	-1,8			
Напряжение фазы В на В1, кВ	152,7	158,4	-3,7			
Напряжение фазы С на В1, кВ	140	145	-3,6			
Напряжение фазы А на В2, кВ	87,9	84,5	3,9			
Напряжение фазы В на В2, кВ	121,2	124,4	-2,6			
Напряжение фазы С на В2, кВ	122	123,5	-1,2			

Таблица 2

Короткое замыкание фазы А с одновременным ее разрывом выключателем В1

Таблица 3

Короткое замыкание С – земля с обрывом фазы А левого выключателя

Параметр	Модуль Flow3	Фаза Flow3, °
Ток в месте замыкания, А	2753	53,8
Ток фазы В у В1, А	314	-113
Ток фазы С у В1, А	1594	68
Ток фазы А у В2, А	39	87,1
Ток фазы В у В2, А	319	59,8
Ток фазы С у В2, А	1250	35,9
Напряжение фазы А на В1, кВ	163	39,8
Напряжение фазы В на В1, кВ	155	-100,0
Напряжение фазы С на В1, кВ	40,1	146,3
Напряжение фазы А на В2, кВ	126,8	-2,6
Напряжение фазы В на В2, кВ	124	-113,6
Напряжение фазы С на В2, кВ	87,7	117,6

Двойные замыкания на землю. На рис. 4 показана схема электрических сетей 35 кВ, включающая два генератора, имеющих одинаковые по модулю и фазе напряжения.

На линиях РМ и GN происходят однофазные замыкания на землю в фазах В и С. В работе [3] для линий заданы удельные сопротивления прямой последовательности и предлагается утроить эти величины для получения сопротивлений нулевой последовательности. Реактивное сопротивление нулевой последовательности зависит от удельной проводимости земли, которое в комплексе Flow3 можно подобрать для обеспечения требуемого реактанса линии. Для обеспечения необходимого активного сопротивления линий в расчетную схему дополнительно введены фильтры нулевой последовательности, показанные на рис. 5.

Рис. 4. Схема сетей 35 кВ.

Фильтр представляет собой модель пятистержневого трехфазного трансформатора, первичные катушки которого не соединены, а вторичные включены параллельно. При малых потерях короткого замыкания такой трансформатор имеет небольшое сопротивление прямой последо-

вательности, а реактанс нулевой последовательности равен утроенному значению сопротивления, включенного между зажимом вторичной обмотки 4 и землей. Для обеспечения условий задачи 7-3 работы [3] такой фильтр включается последовательно с каждой линией.

В расчетную схему (рис. 6) включены два трансформатора ТДН-40000/115/37 с подобранными напряжениями короткого замыкания для обеспечения указанных на рис. 4 мощностей короткого замыкания.

Рис. 6. Расчетная схема программного комплекса.

Короткие замыкания на схеме рис. 6 обеспечиваются включением двух RLэлементов (номера узлов 19-24, 25-26) с указанием на их свободных концах шунтов большой проводимости. Буквенные обозначения расчетной схемы соответствуют рис. 4. В табл. 4 представлено сопоставление результатов расчетов. Как видно из табл. 4, только в одном случае различия в результатах расчетов модулей величин превышают 1 %; угловые различия составляют десятые доли градуса. Малые различия обусловлены небольшим влиянием емкостей ЛЭП, которые учитываются в расчетах Flow3 и не учитываются в работе [3]; в неповрежденной фазе А существенно больше емкостная генерация, что и приводит к большему различию.

Два одновременных КЗ на подстанциях с короткозамыкателями; питающая сеть с малым током замыкания на землю. На рис. 7 показана схема электрической сети 35 кВ, работающей с изолированной нейтралью. Схема взята из [3], где указано сопротивление питающей системы $X_C = j3.4$ Ом, приведенное к напряжению 35 кВ. Для получения расчетной схемы использована модель трансформатора ТДН-40000-115/38.5 с подобранным напряжением короткого замыкания, обеспечивающим $X_C = j3.4$ Ом.

Таблица 4

Параматр	Модуль	Модуль	Разница,	Фаза по	Фаза
параметр	по [3]	Flow3	%	[3], °	Flow3, °
Ток в месте КЗ М	1189	1177	1,0	-33,7	-33,9
Ток фазы А ЛЭП РG	211	206	2,4	129,3	130,5
Ток фазы В ЛЭП РG	503	498	1,0	150,1	149,5
Ток фазы С ЛЭП РG	487	482	1,0	149,7	149,1
Напряжение фазы А шин Р	31,28	31,05	0,7	94,6	94,6
Напряжение фазы В шин Р	14,33	14,20	0,9	-14,2	-14,6
Напряжение фазы С шин Р	20,73	20,61	0,6	179,5	180,1
Напряжение фазы А шин G	33,75	33,80	-0,1	81,9	81,9
Напряжение фазы В шин G	22,99	22,86	0,6	0,5	1,0
Напряжение фазы С шин G	12,33	12,21	1,0	161,9	161,9

Двойное КЗ в системе с изолированной нейтралью; токи в А, напряжения в кВ

Рис. 7. Схема сети 35 кВ.

Для линии 35 кВ в работе [3] указано только реактивное сопротивление *j*0.4 Ом/км, поэтому выбран провод большого сечения с малым активным сопротивлением. Расчетная схема представлена на рис. 8. Рассматривается возникновение двухфазного короткого замыкания В-С на стороне 10 кВ трансформатора Т, приводящего к срабатыванию короткозамыкателя В-С на стороне 35 кВ подстанции. В табл. 5 представлены результаты расчетов режима двух одновременных коротких замыканий.

Различие в результатах расчетов по модулям токов и напряжений в большинстве случаев не превышает 0,6 %; более существенные расхождения фаз – до 10° обусловлены влиянием активных сопротивлений элементов, которые в работе
не учитываются.

Рис. 8. Расчетная схема программного комплекса.

Таблица 5

Два одновременных КЗ в системе с изолированной нейтралью; токи в А, напряжения в

KD					
Парамотр	Модуль	Модуль	Разница,	Фаза по	Фаза
Параметр	по [3]	Flow3	%	[3], °	Flow3, °
Ток в месте КЗ М	2467	2384	3,4	-113,4	-103,9
Ток в месте КЗ N	-	3597	-	-	5,8
Ток фазы А трансформатора 35/11	654	654	0,0	0	5,9
Ток фазы В трансформатора 35/11	654	652	0,3	0	5,7
Ток фазы С трансформатора 35/11	1308	1306	0,2	180	185,8
Ток фазы А ЛЭП	654	653,7	0,0	0	5,9
Ток фазы В ЛЭП	2286	2250	1,6	-98,2	-88,1
Ток фазы С ЛЭП	2286	2299	-0,6	98,2	108,4
Напряжение фазы А в точке М	16,00	16,03	-0,2	90,0	91,7
Напряжение фазы В в точке М	8,00	8,03	-0,4	-90,0	-89,1
Напряжение фазы С в точке М	8,00	8,01	-0,1	-90,0	-89,0
Напряжение фазы А в точке N	4,36	4,36	0,0	90,0	91,4
Напряжение фазы В в точке N	2,18	2,18	0,0	-90,0	-89,1
Напряжение фазы С в точке N	2,18	2,18	0,0	-90,0	-89,0
Напряжение фазы А в точке 12	19,19	19,16	0,2	90,0	89,9
Напряжение фазы В в точке 13	14,50	15,11	-4,2	-41,4	-44,4
Напряжение фазы С в точке 14	14,50	14,01	3,4	-138,6	-142,1

Два одновременных КЗ на подстанциях с короткозамыкателями; питающая сеть с большим током замыкания на землю. В задаче 6.4 из работы [3] предлагается определить токи и напряжения при двойном КЗ в сети, схема которой показана на рис. 9.

Рис. 9. Схема сети.

С целью обеспечения условий, близких к задаче 6.4 [3], для модели ЛЭП выбраны провода АС-600 с малыми активными сопротивлениями.

На рис. 10 приведена расчетная схема комплекса Flow3. Генератор системы задан источниками ЭДС с индуктивными сопротивлениями *j*8.25 Ом, а недостающие *j*2.75 Ом для нулевой последовательности дополняются фильтром нулевой последовательности (рис. 5), нагруженным на индуктивный элемент. На рис. 10 узлы 9, 10 и 11 являются балансирующими по активной и реактивной мощностям. Перемычки, имитирующие короткие замыкания, имеют сопротивления 0.01 Ом.

Рис. 10. Расчетная схема комплекса Flow3.

В табл. 6 представлены результаты расчетов двойного замыкания на землю в сети. Как видно из табл. 6, наиболее существенные различия по модулям тока имеются для фазы С, где ток сравнительно невелик и значительна доля емкостной генерации, учитываемой в комплексе Flow3. Угловые расхождения связаны в основном с активными сопротивлениями линии и трансформатора.

Выводы. Разработанная методика и программный комплекс расчетов режимов ЭЭС в фазных координатах позволяет определять режимы трехфазных систем при любом количестве несимметрий. В частности, возможно моделирование режимов при различных сочетаниях несимметричных коротких замыканий и обрывов проводов. Проведенные сопоставительные расчеты подтвердили корректность разработанных моделей.

Таблица 6

Параметр	Модуль	Модуль	Разница,	Фаза по	Фаза
	по [3]	Flow3	%	[3], °	Flow3, °
Ток в месте КЗ 11 кВ	-	7999	-	-	79,3
Ток в месте КЗ 110 кВ	3956	3971	-0,4	-5,7	-2,2
Ток фазы А трансформатора Т	626	670	-7,0	130,0	132,2
Ток фазы В трансформатора Т	1110	1119	-0,8	-131,9	-129,4
Ток фазы С трансформатора Т	627	673	-7,3	129,9	132,3
Ток А ЛЭП, узел 22	3535	3533	0,1	1,4	5,6
Ток В ЛЭП, узел 23	1100	1116	-1,5	-131,9	-129,4
Ток С ЛЭП, узел 24	627	670	-6,9	129,9	132,3
Напряжение фазы А Т	0	0,04	-	-	-2,2
Напряжение фазы В Т	57,96	57,05	1,6	-40,0	-40,3
Напряжение фазы С Т	66,85	66,72	0,2	-140,9	-141,2

Два одновременных коротких замыкания в системе с большими токами; тока в А,

Литература

1. Закарюкин В. П., Крюков А. В. Сложнонесимметричные режимы электрических систем. Иркутск : ИГУ, 2005. 273 с.

2. Крюков А. В., Закарюкин В. П., Асташин С. М. Управление режимами систем тягового электроснабжения. Иркутск : ИрГУПС, 2009. 104 с.

3. Авербух А. М. Примеры расчетов неполнофазных режимов и коротких замыканий. Л.: Энергия, 1979. 184 с.

4. Flow3 – расчеты режимов электрических систем в фазных координатах : программа для ЭВМ / Крюков А. В., Закарюкин В. П. ; Федер. служба по интеллектуальной собственности, патентам и товарным знакам. Св. ГР № 2005611176 (РФ). Зарег. в Реестре программ 19.05.05.

УДК 630*810(57.063.3):630*36

П.Б. Рябухин*, Н.В. Казаков, А.Н. Бурлов

МЕТОД ЛЕСОПРОМЫШЛЕННОЙ ТИПИЗАЦИИ ЛЕСОСЕК ПО ПРИРОДНО-ПРОИЗВОДСТВЕННЫМ УСЛОВИЯМ НА ПРИМЕРЕ ЕЛЬНИ-КОВ ДАЛЬНЕВОСТОЧНОГО ФЕДЕРАЛЬНОГО ОКРУГА

В статье представлен метод типизации лесосек для лесопромышленного использования, проведен анализ существующих подходов к формализации естественных и промышленных условий лесоэксплуатации, осуществлена классификация современных лесосек ельников региона.

Ключевые слова: алгоритм, метод, типизация, лесосека, еловые леса, природнопроизводственные условия, лесопромышленные параметры.

Интенсификация лесопромышленного производства, эффективность и надежность работы лесозаготовительных машин в значительной мере зависят от степени адаптации техники к конкретным условиям эксплуатации, которые прежде всего обусловливаются природными и климатическими факторами, а также региональной спецификой производства. Особенно это актуально для Дальневосточного федерального округа (ДФО), где существуют противоречия между растущей потребностью в продукции из древесины, демографической ситуацией и экологической уникальностью природы (недостаток специальных технических средств, реализующих ресурсосберегающие и природоохранные методы лесозаготовок; доминирующая экспортная специализация без комплексной переработки лесоматериалов на местах; острый дефицит рабочей силы; ярко выраженные климатические контрасты и т.д.).

Сведение существующего многообразия совокупностей природно-производственных условий по лесопромышленным показателям к ограниченному числу типов позволит получить инструмент для более эффективного управления возобновляемыми ресурсами и значительно сузить диапазон результативного множества параметров создаваемых лесосечных машин для конкретных условий их эксплуатации, а также оценить применимость существующей лесозаготовительной техники.

Типизация природно-производственных условий, выполненная ЦНИИМЭ в восьмидесятые годы прошлого века [1], непосредственно связана с общим лесорастительным районированием территории страны и недостаточно отражает

^{* -} автор, с которым следует вести переписку