УДК 628.646

С.В. Белокобыльский, П.М. Огар*, В.А. Тарасов

ОПТИМАЛЬНОЕ ПРОЕКТИРОВАНИЕ ЗАТВОРОВ ТРУБОПРОВОДНОЙ АРМАТУРЫ С УПЛОТНЕНИЕМ «МЕТАЛЛ-МЕТАЛЛ»

Показан многокритериальный подход к проектированию затворов трубопроводной арматуры конусного типа с начальным касанием золотника и седла вдоль полосы при действии среды «под золотник». Определяется оптимальное сочетание исходных конструктивных параметров, обеспечивающих заданные прочность, герметичность и ресурс с минимальным усилием герметизации.

Ключевые слова: многокритериальная оптимизация, вычислительный эксперимент, трубопроводная арматура, герметичность, затвор, золотник, седло

Задачи повышения качества трубопроводной арматуры (ТА) следует решать на стадии проектирования, когда необходимо и возможно всестороннее рассмотрение конструкций с точки зрения обеспечение множества часто противоречивых требований. Так, при проектировании ТА должны удовлетворяться такие требования, как минимальная масса и достаточная прочность, скорость срабатывания и минимальная динамическая нагруженность, минимальная стоимость и долговечность и т.п. Таким образом, при конструировании ТА должен быть осуществлен выбор их оптимальных параметров, наилучшим образом соответствующих предъявляемым противоречивым требованиям. При существующей практике проектирования эту задачу решают, прорабатывая несколько альтернативных вариантов с выполнением соответствующих расчетов. Результаты проработки даже очень большого количества альтернативных вариантов, основанных на традиционных подходах, не могут дать конструктору представления о возможностях конструкции. Осложняющим обстоятельством является то, что такие задачи многокритериальны с противоречивыми целевыми функциями, поэтому конструктору трудно выбрать обоснованное компромиссное решение, применяемые классические методы оптимизации предназначены, в основном, лишь для решения однокритериальных задач. Современные методы оптимального проектирования, предполагающие многокритериальный подход, подробно изложены в работах [1, 2, 3] и в настоящей работе применены для оптимального проектирования затворов ТА. Такой же подход авторы использовали в работе [4] при проектировании затворов разгруженных от действия давления рабочей среды. При этом число вычислительных экспериментов равнялось $2^5 = 32$.

Целью настоящей работы является определение оптимального сочетания конструктивных параметров затвора ТА конусного типа с начальным касанием вдоль полосы при действии среды «под золотник» (рис.1).

Рис.1. Схема затвора конусного типа

Исходные данные на проектирование включают: номинальный диаметр DN (или средний диаметр зоны уплотнения d_c); требуемую герметичность G_1^{**} (или Q_1^{**}); вид герметизируемой среды, ее давление p, температура T; действие среды – «под золотник», срок службы N_c^{**} циклов «закрыто - открыто», из них ξN_c^{**} циклов при отсутствии давления под клапаном, $\xi \in [0,1]$; другие возможные характеристики и показатели.

Необходимо определить такое сочетание исходных конструктивных параметров, чтобы основные требуемые свойства – прочность, герметичность и долговечность обеспечивались минимальным усилием герметизации, что обеспечит минимальные массогабаритные характеристики. При близких значениях минимального усилия герметизации предпочтение имеет конструкция с большим значением N_c

Используем принятые в работе [4] обозначения при формировании пространства исходных параметров, а также при введении функциональных ограничений и критериев качества:

$$\alpha_1 \equiv b$$
, $\alpha_2 \equiv r$, $\alpha_3 \equiv \alpha$;

где $0 \le \alpha_1 \le \alpha_1^{**}$, $\alpha_2^* \le \alpha_2 \le \alpha_2^{**}$, $\phi \le \alpha_3 \le \frac{\pi}{2}$, $\phi = \operatorname{arctg} \mu_{\tau}$.

^{* -} автор, с которым следует вести переписку.

Возможно введение других параметров характеризующих конструктивные особенности затвора (например, толщину покрытия, шероховатость поверхности, физико-механические свойства материалов золотника и седла). Важное влияние на напряженное состояние контактирующих тел оказывает коэффициент трения, однако его не используем в качестве исходного параметра, так как он определяется параметрами шероховатости, физико-механические свойствами, контактными напряжениями и может быть определен либо расчетным путем, либо экспериментально.

Выбор пробных точек в трехмерном пространстве параметров производим с помощью равномерно распределенных ЛПт-последовательностей [2, 3], отличающимися наилучшими свойствами равномерности. В этом случае пробные точки на любую координатную ось различны и расположены квазиравномерно. Число пробных точек для каждого параметра равно числу испытаний – вычислительному эксперименту для каждого сочетания исходных конструктивных параметров. Согласно [2, 3]

$$\begin{aligned} \alpha_{j}^{i} &= \alpha_{j}^{*} - (\alpha_{j}^{**} - \alpha_{j}^{*})q_{ij}, \quad j = 1,3; \\ \alpha_{2}^{i} &= \alpha_{2}^{**} + (\alpha_{2}^{**} - \alpha_{2}^{*})q_{i2}; \end{aligned}$$

$$\begin{split} q_{ij} &= \sum_{k=1}^{m} 2^{-k+1} \left\{ \frac{1}{2} \sum_{l=k}^{m} \left[2 \cdot \left\{ i \cdot 2^{-l} \right\} \right] \cdot \left[2 \cdot \left\{ r_{j}^{(l)} \cdot 2^{k-1-l} \right\} \right] \right\}, \\ m &= 1 + \left[\frac{\ln i}{\ln 2} \right]; \end{split}$$

здесь [z] - целая часть, $\{z\}$ - дробная часть числа

$$z; r_j^{(l)} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 5 & 15 & 1 & 51 & 85 & 255 & 257 \\ 1 & 1 & 7 & 11 & 1 & 61 & 67 & 79 & 46 \end{vmatrix}$$

Для каждого набора исходных параметров α_n определяем напряженно-деформированное состояние. Вначале определяем q_l , обеспечивающее заданную интенсивность утечки Q_l^{**} . Используя данные работы [4] и с учетом того, что l = 2(b+a) = 2c, имеем

$$\int_{-1}^{1} \exp\left(2, 3\left(k_{0i}k_{r}\theta q_{n}\left(X\right) - b_{0i}\right)\right) dX = \frac{R_{\max}^{3} p^{2}C_{uo}}{8\mu cQ_{l}}$$
(1)

Для затворов с симметричными просветами сечений профилей золотника и седла распределение нормального контактного давления и ширина зоны контакта определяются выражением [4].

$$\theta q_n(X) = \frac{c}{2\pi r} \left\{ \sqrt{1 - X^2} 2 \arccos B + (X + B) \ln \left| \frac{B + X}{1 + BX + \sqrt{(1 - X^2)(1 - B^2)}} \right| - (X - B) \ln \left| \frac{B - X}{1 - BX + \sqrt{(1 - X^2)(1 - B^2)}} \right| \right\}$$
(2)

Ширину зоны контакта определяем из уравнения [4]

$$\frac{c}{r}\left(\arccos\frac{b}{c} - \frac{b}{c}\sqrt{1 - \frac{b^2}{c^2}}\right) = \frac{2\theta q_{ln}}{c}$$
(3)

Выражения (1), (2), (3) с учетом того, что

$$q_{ln} = c \int_{-1}^{1} q_n \left(X \right) dX = \frac{q_l}{\sin \alpha + \mu_\tau \cos \alpha}, \quad (4)$$

составляют замкнутую систему уравнений, позволяющую для каждого набора параметров α_n определить значение q_l , обеспечивающее заданную герметичность Q_l^{**} . После определения q_l следует произвести проверку следующего функционального ограничения – статической прочности. Учитывая, что согласно исходным условиям закрытие (нагружение) затвора может происходить при отсутствии давления среды, проверку на статическую прочность следует производить при $\pi d^2 n$

общей нагрузке
$$P = P_q + P_p$$
, где $P_p = \frac{m_c p}{4}$,что
соответствует удельной нагрузке

$$q_{l\Sigma} = q_l + \frac{P_p}{\pi d_c} = q_c + \frac{d_c p}{4}.$$

Условие статической прочности

$$\sigma_{_{\mathsf{ЭKB}}}\!\left(\alpha_{_{n}},q_{_{l}\Sigma}\right)\!\leq\!\left[\sigma\right]\!\equiv\!\sigma^{^{**}}\,,\qquad(5)$$

где $\sigma_{_{3KB}}$ - максимальное эквивалентное напряжение согласно [4].

Проверка объемной усталостной прочности производится по выражению

$$N_{y} = \left(\frac{\sigma_{_{9KB}}}{\sigma^{o}}\right)^{\frac{1}{n}} \le N^{**}$$
(6)

где σ^{o} , *n* - константы для данной марки материала (табл.1)

٦	Га	б	пи	119
	12	()	пи	117

1

№ п/п	Марка материала	σ _{экв} , МПа	п	σ _в , МПа	σ _т , МПа	Е, ГПа
1	сталь30Х13	2820	0,0625	850	710	223
2	сталь38ХНМА	1830	0,0965	1080	930	213
3	сталь40ХН2МА	1755	0,058	1080	930	215

Следующим функциональным ограничением является условие долговечности. Число циклов нагружений, при котором сохраняются требования по герметичности, определяется кривой фрикционной усталости затвора, которая описывается уравнением

$$\left(\frac{q_{n\max}}{\sigma_o}\right)^m N_c = N_o \tag{7}$$

где $N_o = 10^4$ - базовое число циклов; m = 1,5...2,5 - параметр кривой выносливости, где меньшее значение соответствует применению более высококачественных материалов без существенных динамических нагрузок; σ_o - реальный предел выносливости детали при пульсирующем цикле нагружения, МПа; $\sigma_0 = \frac{2\sigma_{-1}\varepsilon_{\sigma}\beta}{(1+\psi_{\sigma})K_{\sigma}S_{\sigma}}$, где σ_{-1} -

предел контактной выносливости материала при симметричном цикле нагружения (рис. 2); ε_σ коэффициент, учитывающий масштабный фактор (рис 3); β - коэффициент, характеризующий качество поверхности (рис 4); $\psi_{\sigma} = 0, 2...0, 3$ - коэффициент чувствительности к ассиметрии цикла нагружений; К_о - эффективный коэффициент концентрации напряжений, $K_{\sigma} = 1 + q_{\sigma}(\alpha_{\sigma} - 1);$ $q_{\sigma} = 0,6...0,9$ – коэффициент, характеризующий чувствительность материала к концентрации напряжений; $\alpha_{\sigma} = q_{n \max}/q_m$ – теоретический коэффициент концентрации напряжений; q_m - среднее контактное давление; $S_{\sigma} = 1,25...2,2$ коэффициент безопасности, принимаемый в зависимости от уровня ответственности арматуры, условий эксплуатации и обслуживания.

Рис. 2. Зависимость предела контактной выносливости от твердости материала

фициент Е .:

В соответствии с условием поставленной задачи срок службы затвора составляет N_c^{**} циклов «закрыто – открыто», где $\xi \in [0,1]$. Таким образом, $(1-\xi)N_c^{**}$ циклов площадка контакта нагружается удельным усилием q_l , а ξN_0 циклов – удельным усилием $q_{l\Sigma}$. С использованием кинетического суммирования повреждаемости допускаемое значение погонной нагрузки q_{ln}^{**} , при которой обеспечиваются исходные условия по долговечности для затворов с начальным контактом вдоль линии, определяется из уравнения

$$q_{ln}^{**} = \pi r \sigma_o \left[\frac{N_o}{N_c^{**} \left(1 - \xi + \xi K_1^{m/2} \right)} \right]^{2/m}, \quad (8a)$$

где
$$K_1 = 1 + \frac{d_c p}{4q_{ln}^{**}}$$
.

Для затворов с начальным контактом вдоль полосы допускаемое контактное давление определяется из уравнения

$$q_n^{**} = \sigma_o \left[\frac{N_o}{N_c^{**} \left(1 - \xi - \xi K_2^m \right)} \right]^{1/m},$$
(86)

где $K_2 = 1 + \frac{d_c p}{4k_{s\phi} b q_n^{**}}; \quad k_{s\phi} = c_{s\phi} / b$

Для затворов с начальным контактом вдоль линии функциональное ограничение по обеспечению заданной долговечности

$$q_l \le q_l^{**} \,, \tag{9a}$$

для затворов с начальным контактом вдоль полосы

$$q_{n\max} \le q_n^{**} \,. \tag{96}$$

Согласно условию поставленной задачи одним из критериев качества является удельное усилие герметизации. Введение этого критерия вполне оправдано, так как именно этой характеристикой во многом определяются материалоемкость и энергоемкость конструкции, ее габариты.

Поэтому

$$\Phi_1(A) = q_1 \to \min, \qquad (10)$$

а соответствующий нормированный критерий качества

$$\lambda_1(A) = \frac{\Phi_1(A)}{\Phi^{**}} = \frac{q_l}{q_l^{**}} \to \min; \ \lambda_1(A) < \lambda_1^{**} = 1.$$

Если затворы имеют одинаковые значения q_l , то предпочтение следует отдавать тем, у которых больше запас по долговечности, поэтому следующим критерием качества для точек множества $G = \{A(5), (6), (9)\}$ при линейном начальном контакте является $\Phi_2(A) = N_c =$ $= \frac{N_o}{\left(\frac{q_{ln}}{\sigma_c \pi r}\right)^{m/2} \left(1 - \xi + \xi \left(1 + \frac{d_c P}{4q_{ln}}\right)^{m/2}\right)} \rightarrow \max$ (11a)

или при начальном контакте вдоль полосы $\Phi_2(A) = N_c =$

$$= \frac{N_o}{\left(\frac{q_{n\max}(X)}{\sigma_o}\right)^m \left(1 - \xi + \xi \left(\frac{d_c p}{4bk_{s\phi}q_{n\max}(X)}\right)^m\right)} \to \max \quad (116)$$

соответствующий нормированный критерий

$$\lambda_2(A) = \frac{\Phi_2^*}{\Phi_2(A)} = \frac{N_c^{**}}{N_c} \to \min$$
$$\lambda_2(A) < \lambda_2^{**} = 1$$

Предполагая габариты конструкции затвора минимальными, в качестве критерия можно вве-

сти коэффициент запаса прочности *n*, считая, что чем меньше значение коэффициента запаса прочности, тем меньше габариты конструкции. Таким образом

$$\Phi_{3}(A) = n = \frac{[\sigma]}{\sigma_{_{3KB}}} = \frac{s^{**}}{s_{_{3KB}}} \to \min.$$
(12)

Нормированный критерий $\lambda_3(A)$ можно представить в виде

$$\lambda_3(A) = \frac{[\sigma] - \sigma_{_{3KB}}}{[\sigma]} = 1 - \frac{1}{n} = \frac{n-1}{n} \longrightarrow \min;$$
$$\lambda_3(A) < \lambda_3^{**} = 1$$

Таким образом, определено пространство исходных параметров и назначены параметрические, функциональные и критериальные ограничения, т.е. произведена постановка задачи оптимизации затворов с уплотнением металл-металл.

Следующим этапом является составление таблиц испытаний (вычислительных экспериментов) в соответствии с выбранными математическими моделями. Вначале определяют зависимость $C_u = C_u(F_q)$, затем находят параметры аппроксимации k_{oi} и b_{oi} , зависимости $c(F_q) = b_{oi} - k_i F_q$, где $c = lg(C_u/C_{uo})$. Решая систему уравнений (1), (2), (3), (4) для каждого набора исходных параметров находят: удельное усилие q_l , обеспечивающее заданную герметичность; ширину зоны контакта; распределение контактного давления $q_n(X)$. Далее определяют $\max_{max} \sigma_{3\kappa B}(x, z)$ и проверяют условия (5) и (6), находят q_{ln}^{**} (или q_n^{**}) и проверяют условие (9), а также условие заедания.

Для точек пространства параметров, удовлетворяющих функциональным ограничениям, рассчитывают критерий качества (10) – (12). После составления таблицы испытаний, если заданы критериальные ограничения, поверяется разрешимость задачи и при необходимости уточняются критериальные ограничения. Затем исследуется зависимость критериев и производится набор оптимальных параметров по нескольким важнейшим критериям. Таблица испытаний ранжируются по величине удельного усилия (интенсивности нагрузки) *q*₁.

Пример результатов вычислительных экспериментов для $d_c = 40$ мм и p = 20 МПа представлены в таблице 2.

Шероховатость каждой из контактирующих поверхностей соответствовала $R_{ai} = 0,32$ мкм (или $R_{\max i} = 2$ мкм) и $R_{qi} = 0,50$ мм. Интенсивность допустимой утечки $Q_l = 0,2785$ см³/(мин.мм), что соответствует классу герметичности B₁ по ГОСТ 9544-2005 при испытании воздухом номи-

нальным давлением (кгс/см²) *PN*200 для номинального диаметра DN20. При определении $\sigma_{_{3KB}}$ (столбец №4 табл.2) учитывалась нагрузка, необходимая для компенсации действия давления среды при подаче ее «под золотник». В таблице 2 приведены основные фрагменты протокола вычислительных экспериментов (в частности удовлетворяющие функциональному ограничению $N_c^{**} = 3000$).

Анализ полной таблицы вычислительных экспериментов позволил сделать следующие выводы:

1. Разброс значений q_l , обеспечивающих заданную интенсивность допустимой утечки испытательной среды, для всех экспериментов составляет более порядка, что свидетельствует о хорошей чувствительности предлагаемого метода.

2. При заданных параметрических ограничениях и значениях q_l , обеспечивающих заданную интенсивность утечки, статическая прочность обеспечивается, так как все максимальные значения $\sigma_{_{3KB}}$ не достигали предела текучести материала (для стали 38ХНМА $\sigma_T = 930$ МПа).

При другом плане вычислительного эксперимента (здесь не представленного) для минимальных значений ширины зоны контакта b, радиуса r и угла α° эти требования не выполнялись

3. Условие объемной усталости для всех экспериментов выполняется, диапазон разброса N_y составляет от десятков тысяч до десятков миллионов. Уточнение по этому условию, как и в предыдущем пункте, требуется при сочетании исходных параметров, соответствующих их минимальным значениям.

4. Разброс максимальных значений q_n составляет ± 10% от среднего значения. При этом данные по числу циклов N_c в течении которых сохранятся заданная герметичность значительно отличаются. Например, в полной таблице 2 N_c принимает значение от 141 цикла (строка № 66 эксперимент № 1) до 6777 циклов (строка № 4 эксперимент № 128).

Если назначить $N_c^{**} = 1000$, то допустимое множество точек D, удовлетворяющее этому критерию качества составит 80, при $N_c^{**} = 2000 D = 31$, при $N_c^{**} = 3000 D = 19$, при $N_c^{**} = 4000 D = 10$, при $N_c^{**} = 5000 D = 6$.

5. Для лучших сочетаний исходных параметров по критерию q_l характерна узкая ширина начальной зоны контакта *b*. Например, для данных таблицы 2 для пяти лучших точек $b \le 0,205$ мм, при этом r = 2,3....7,95 мм, а угол $\alpha = 17,3$... 86,5°. Обращают внимание эксперимент № 64 (строка № 3 табл. 2), для которого угол α составляет почти $\pi/2$, и эксперимент № 128 (строка № 4

табл. 2) для которого $N_c = 6777$, что является наибольшим значением N_c в таблице.

Рис. 5. Связь максимальных эквивалентных напряжений с ранжированными по увеличению значениями интенсивности нагрузки q_l , обеспечивающих заданные нормы герметичности.

6. При увеличении в таблице значений q_l имеется тенденция уменьшения значений максимальных эквивалентных напряжений $\sigma_{_{3KB}}$. На рис. 5 представлена зависимость $\sigma_{_{3KB}}(q_l)$, построения по данным таблицы 2.

7. С ростом коэффициента трения наблюдается незначительный рост значений q_l и более существенное увеличение значений $\sigma_{_{экв}}$. Например, для тех же условий таблицы 2. при изменении коэффициента трения с 0,2 до 0,3 для лучших вариантов сочетания исходных параметров q_l увеличивается на 5 %, а $\sigma_{_{экв}}$ - на 20 %.

8.Наиболее значительным параметром, влияющим на число точек допустимого множества D является доля ξ общего числа циклов «открытозакрыто» при котором при закрытии нет избыточного давления среды. Для лучших вариантов сочетания исходных параметров при изменении ξ от 0,2 до 1 число циклов N_c может уменьшиться в 2....3 раза. На рис. 6 представлена зависимость $N_c = N(\xi)$.

Рис. 6. Зависимость величины ресурса N_c от параметра ξ для лучшего сочетания исходных параметров (табл. 2. эксперимент № 32)

Таблица 2

Протокол вычислительных экспериментов для затворов:	
при $d_c = 40$ мм; $p = 20$ МПа; $Q_l = 0,2785$ см ³ /(мин. мм); $R_{max} = 4$ мкм	

	№ эксп.	<i>b</i> , мм	<i>г</i> , ММ	$\alpha^{\rm o}$	$\sigma_{_{_{3KB}}}$, MПa	<i>N</i> _y , цикл.	$q_{n\max}$, МПа	N_c ,цикл.	q_l , Н/мм
	0	1	2	3	4	5	6	7	8
0	32	0.166	5.156	17.34	717.1	1.645.104	496	5.908·103	61.7
1	96	0.127	2.367	53.09	759.8	9.041.103	528.3	3.565.103	74.16
2	112	0.205	4.227	23.79	720.4	1.569.104	504	5.015.103	74.96
3	64	0.088	3.297	86.48	657.1	4.072·104	514.9	4.368.103	79.51
4	128	0.049	7.945	49.57	550.9	2.527.105	479.7	6.777·103	85.05
5	16	0.322	1.438	47.81	734.9	1.276.104	548.6	1.836.103	90.21
6	76	0.907	1 711	17.93	722.8	1 517.104	541.2	1 078.103	91.6
7	40	0.556	2 203	27.89	671.7	3 24 104	530.7	1 926 103	102.7
8	120	0.361	1 383	73.01	678.8	2 905-104	550.2	1.667.103	102.7
9	56	0.001	5 / 8/	3/ 02	540.2	3 000-105	/02.0	1.007 100	1/13
10	00	0.4	6 205	20.65	522.1	2 552.105	492.9	5 16.103	143
10	00	0.439	0.303	29.00	533.1	0.475.104	407.1	5.10.105	143.4
10	18	2.349	1.219	22.03	612.2	8.475.104	500.3	340.5	145.1
12	/2	0.595	3.023	41.37	559.3	2.161.105	517.5	2.429.103	151.1
13	54	1.647	3.734	16.17	543.1	2.933.105	508.5	1.403.103	157
14	60	0.712	7.672	20.86	504.3	6.323.105	478.8	4.694.103	158.3
15	52	1.024	1.109	63.05	591.2	1.217.105	559.3	646.2	162
16	48	0.244	7.016	60.7	497.2	7.326.105	483	6.755·103	165.5
17	100	1.141	2.039	37.85	553.9	2.392.105	533.9	1.062.103	170.1
18	80	0.283	6.086	83.55	495.5	7.582·105	488.8	5.923·103	175
19	126	1.296	2.695	30.82	532	3.631.105	522.2	1.249.103	179
20	86	1.686	1.055	48.4	529.5	3.814.105	561.4	402.2	182.7
21	24	0.478	3.844	68.91	509.3	5.705.105	507.6	3.375.103	184.8
22	4	1.257	2.75	33.75	522.7	4.362·105	521.4	1.304.103	187.5
23	103	3.012	1,164	28.48	558.8	2.18.105	557.2	264.1	187.8
24	116	0.985	5 758	26.13	488.9	8 72.105	490.6	3 036 103	189.4
25	124	0.673	3 57	58.95	/07.7	7 2/18-105	510.6	2 59 103	202.6
26	28	0.070	2 531	82 97	511.9	5 417.105	524.9	1 715-103	202.0
20	104	0.73	4 664	65.09	194	0.677.105	400.5	2 779.103	203.5
27	104	1.009	4.004	24.06	404	1.675.106	499.3 E14.4	1.047.103	204.9
20	90	1.990	3.242	24.90	401.0	1.575.100	514.4	1.047.103	209.9
29	11	3.441	2.313	19.69	475.3	1.108.100	528.5	408.5	210.5
30	92	0.751	4.992	43.71	470.8	1.131.100	490.0	3.21.103	211.8
31	70	1.842	4.773	22.62	473.5	1.213.106	498.3	1.615.103	220.4
32	30	1.413	3.406	36.09	484.4	9.6.105	512.4	1.453.103	224.2
33	95	2.622	5.867	15.59	459.3	1.664.106	489.6	1.474.103	229.9
34	44	0.868	4.391	51.33	467.1	1.397.106	501.9	2.617.103	234.5
35	117	4.103	3.133	16.76	447.5	2.178.106	515.7	542.4	235.7
36	81	4.805	1.93	20.27	499.6	6.958·105	536	287.8	235.9
37	47	2.739	3.516	23.2	471.9	1.258.106	511	867.4	242.5
38	46	1.491	1.766	79.45	498.2	7.168.105	539.8	742.9	243
39	58	1.959	2.422	39.61	485.4	9.391.105	526.6	802.7	244
40	61	3.83	1.547	30.23	468.1	1.367.106	545.3	283	245
41	35	3.675	1.328	37.27	501.6	6.679·105	551.7	251.7	255.8
42	98	2.388	7.289	19.1	431.3	3.193.106	480.6	1.949.103	266.5
43	6	1.881	1.875	61.87	449	2.105.106	537.3	646.9	267.2
120	 125	 3 791	 6 195	68.32	363.9	 1.857·107	487.3	 1 14·103	 612.6
121	20	3 752	6 25	71 25	363.3	1 891.107	486.0	1 16 103	616.4
122	52	1 1/2	7 22/	52.67	257.0	2 207.107	120.9	1 220.102	62/ 0
122	10	3 363	7.234	00.07	220 =	5 202.107	400.0	1 501.102	622.3
123	43	2.303	1.091	70.03	323.3	2 201 107	4//.2	1 00/ 100	032.3
124	29	3.908	0.900	/3.59	300.0	2.291.107	482.7	1.234.103	000.9
125	5/	4.454	5.922	//.11	335.8	4.2/8.10/	489	949.5	062.9
126	89	4.493	6.742	62.46	356.1	2.329.10/	483.7	1.07.103	6/1.5
127	113	4.727	7.508	82.38	323.6	6.2/6.107	479.2	1.138.103	744.9
128	129	4.981	7.973	66.86	344.2	3.307.107	476.7	1.153.103	766.7

Из особой важности параметра ξ следует необходимость регламентирования процесса «закрытие – открытие». Например, при закрытии поджимать золотник с усилием *F*, где

$$N_q < F < N_q + \varphi N_p$$

 $\varphi \in \overline{0,1}$ и выбирается из условия обеспечения заданного ресурса N_c^{**} , при $\xi = 1$.

Литература

1. Фролов, К. В. Методы совершенствования машин и современные проблемы машиноведения / К. В. Фролов. – М.: Машиностроение, 1984. - 224с.

2. Соболь, И.М. Выбор оптимальных параметров в задачах со многими критериями / И. М Соболь, Р.Б. Статников. – М. : Наука, 1981. – 111 с.

3. Соболь, И.М. Выбор оптимальных параметров в задачах со многими критериями / И. М. Соболь, Р. Б. Статников. – М.: Дрофа, 2006. – С. 175.

4. Белокобыльский, С. В. Многокритериальный подход к проектированию затворов трубопроводной арматуры / С. В. Белокобыльский, П. М. Огар, В. А. Тарасов // Современные технологии. Системный анализ. Моделирование : науч. журн. / Иркут. гос. у-нт путей сообщения. – 2007. - №3(15). –С. 6-10.