УДК 620.17

В.Л. Лапшин*, А.В. Рудых, А.В. Глухов

ИССЛЕДОВАНИЕ ВЯЗКОГО ЭЛЕМЕНТА УПРУГО-ВЯЗКО-ПЛАСТИЧНОЙ МОДЕЛИ

Рекомендована к практическому использованию модель, диссипативные сопротивления которой пропорциональны скорости и величине упругой деформации.

Ключевые слова: механореологическая модель, удар, математическое моделирование.

Рис. 1. Схема упруго-вязкой модели.

Важной задачей при исследовании различных динамических процессов является моделирование ударного взаимодействия тел и изучение закономерностей, описывающих усилия и другие параметры процесса, характеризующие динамику контактного взаимодействия тел.

Исследованию процессов ударного взаимодействия тел посвятили свои научные работы многие ученые как в нашей стране, так и за рубежом. К их числу можно отнести Г. Герца, С.П. Тимошенко, А.Н. Динника, Б.М. Малышева, Н.Н. Давиденкова, В.Л. Бидермана, В. Гольдсмита, Я.Г. Пановко, Н.А. Кильческого, Р. Грибоша, Дж. А. Зукаса, Т. Николаса и многих других.

В последнее время достаточно широкое распространение в теории удара получили так называемые механореологические модели, состоящие из тел вибрационной реологии – упруго-инерционных, вязко-инерционных, пластично-инерционных. Однако, несмотря на то, что в данной области были достигнуты значительные успехи, проблема по разработке точной и достоверной теоретической модели процесса ударного взаимодействия сферического тела с плоской поверхностью продолжает оставаться среди задач, требующих дальнейшего изучения и развития.

На основе решения задачи о статическом сдавливании двух сферических тел, полученного Г. Герцем, для математического описания процесса ударного взаимодействия сферического тела с поверхностью была разработана упруго-вязкая механореологическая модель с нелинейным упругим элементом (рис. 1) [1]. На модели сила упругих сопротивлений $F_{\text{УПР}}$, возникающих при ударном взаимодействии системы, описывается нелинейным упругим элементом ($F_{\text{УПР}}=Ky^{3/2}$). Потери энергии, имеющие место при ударном взаимодействии системы, учитываются вязким параметром модели *C*.

Дифференциальное уравнение движения центра тяжести сферического тела на этапе ударного взаимодействия имеет вид:

$$\ddot{y} + 2n \, \dot{y} + P^2 \, y^{3/2} = -g \, ,$$

где n = C/2m; $P = \sqrt{K/m}$ – частота собственных колебаний упруго-вязкой модели; m – масса сферического тела; K – коэффициент жесткости упругого элемента упруго-вязкой модели; C – коэффициент вязкости вязкого элемента упруго-вязкой модели; \ddot{y} – ускорение центра тяжести тела; \dot{y} – скорость взаим-

ной деформации тела и поверхности; *у* – величина взаимной деформации тела и поверхности.

Важным параметром упруго-вязкой модели является коэффициент демпфирования v = n/P.С увеличением v потери энергии при ударном взаимодействии модели увеличиваются, что соответствует уменьшению высоты отскока сферического тела от поверхности.

^{* -} автор, с которым следует вести переписку.

Рис. 2. Схема упруго-вязкопластичной модели.

Коэффициент жесткости упругого элемента упруго-вязкой модели *К* связан со свойствами и параметрами сферического тела и свойствами исследуемой поверхности и рассчитывается по формуле [1]:

$$K = \frac{4}{3\pi} \sqrt{\frac{R_1 R_2}{(R_1 + R_2) \left[\frac{1 - \mu_1^2}{\pi E_1} + \frac{1 - \mu_2^2}{\pi E_2}\right]^2}, \quad (1)$$

где E_1, E_2 — модули упругости сферического тела и поверхности; μ_1, μ_2 — коэффициенты Пуассона сферического тела и поверхности; R_1, R_2 — радиусы кривизны сферического тела и поверхности.

При исследовании процесса соударения сферического тела с плоской поверхностью для поверхности принимается условие $R_2 \rightarrow \infty$.

Проведенные исследования подтвердили работоспособность предложенной упруговязкой модели ударного процесса, позволили охарактеризовать основные закономерности ее поведения в процессе ударного взаимодействия и оценить значимость основных параметров.

В ходе выполнения дальнейших исследований была разработана и исследована более точная и совершенная упруго-вязко-пластичная механореологическая модель, описывающая процесс ударного взаимодействия сферического тела с поверхностью. В данной литературе [2 – 4] приводится подробное описание модели.

Модель включает в себя два последовательных блока (рис. 2): упруго-вязкий блок $K_1 - C$ и упруго-пластический блок $K_2 - f_2$. Блок $K_1 - C$ описывает упругие деформации системы и учитывает возникающие при этом потери энергии с помощью демпфера. Блок $K_2 - f_2$ описывает пластические деформации и также учитывает возникающие при этом потери энергии.

Коэффициент жесткости упругого элемента модели K_1 связан со свойствами и параметрами сферического тела и свойствами исследуемой поверхности и рассчитывается по формуле (1).

Вся масса сферического тела сосредоточена в инерционном элементе m_1 , масса элемента m_2 ничтожно мала ($m_2 \rightarrow 0$) и не оказывает заметного влияния на динамику движения системы.

Функционирование упруго-вязко-пластичной модели осуществляется следующим образом. На этапе нагружения работают оба блока модели, описывающие упругие и пластические (остаточные) деформации. Когда динамическое усилие достигает максимального значения N_{MAX} , наступает этап разгрузки модели. На данном этапе в работу вступает только упруго-вязкий блок, описывающий исчезновение только упругих деформаций. При этом упруго-пластичный блок остается в деформированном состоянии, так как характеризует пластические деформации материала.

Дифференциальные уравнения движения модели записываются следующим образом:

$$m_{1} \ddot{y}_{1} + C_{1} (\dot{y}_{1} - \dot{y}_{2})^{a1} (y_{1} - y_{2})^{a2} + K_{1} (y_{1} - y_{2})^{n1} = -m_{1}g;$$

$$m_{2} \ddot{y}_{2} + K_{2} y_{2}^{n2} + f_{2} y_{2}^{n3} + K_{2} y_{2}^{n$$

+ $C_1(\dot{y}_2 - \dot{y}_1)^{a1}(y_2 - y_1)^{a2} + K_1(y_2 - y_1)^{n1} = -m_2g,$

где: $y_1, y_2, \dot{y}_1, \dot{y}_2$ – перемещение и скорость масс m_1 и m_2 ; K_1 – коэффициент жесткости упругого элемента упруго-вязкого блока модели; C – коэффициент вязкости вязкого элемента упруго-вязкого блока модели; K_2 – коэффициент жесткости упругого элемента упруго-пластического блока модели; f_2 – коэффициент сдвига упруго-пластического блока модели модели, или коэффициент податливости материала.

Рис. 3. Рабочее поле программы.

Рис. 4. График изменения силы *N*.

Сила ударного взаимодействия определяется:

$$N_1 = C(\dot{y}_1 - \dot{y}_2)^{a_1} (y_1 - y_2)^{a_2} + K_1 (y_1 - y_2)^{n_1};$$

$$N_2 = K_2 y_2^{n_2} + f_2 y_2^{n_3}; N_1 \approx N_2.$$

Таблица 1

Уровни факторов иинтервалы варьирования

Фактори	Кодовое	Ур	торов	
Факторы	обознач.	-1	0	+1
K_1	X_1	4000	7000	10000
K_2	X_2	400	5200	10000
f_2	X_3	10	55	100

Рис. 5. График изменения силы *N*.

На базе математической модели была разработана специальная исследовательская программа. Решение системы уравнений осуществлялось численным методом Рунге-Кутта. В результате проведения комплекса исследований были выявлены основные закономерности поведения упруго-вязко-пластичной модели.

Однако при выполнении исследований, как и для упруго-вязкой модели, диссипативные сопротивления принимались пропорциональ-

ными скорости деформации $F_{\text{дис}} = C(\dot{y}_1 - \dot{y}_2)$ ($a_1 = 1; a_2 = 0$). Это наиболее простой вариант, который характеризуется существенным недостатком.

В начальный момент ударного взаимодействия сила нормальной реакции N_H не равна нулю (рис. 3) и определяется

$$N_H = F_{\text{дис}} = C \dot{y}_H$$

(где \dot{y}_{H} – скорость падения сферического тела к моменту удара). В результате закономерность изменения силы N на начальном этапе описывается не совсем корректно.

Устранить данный недостаток можно путем использования более сложной закономерности изменения силы диссипативных сопро-

тивлений: $F_{ДИC} = C(\dot{y}_1 - \dot{y}_2)^{a1}(y_1 - y_2)^{a2}$. На начальном этапе были приняты следующие параметры: $a_1 = 1; a_2 = 1;$

$$F_{\text{ДИС}} = C(\dot{y}_1 - \dot{y}_2)(y_1 - y_2) \,.$$

Данная модель вязкого элемента обеспечивает выполнение условия $N_{H} = 0$ в начальный момент ударного взаимодействия, что соответствует фактической закономерности

изменения силы N (рис. 4). Для сравнения на рис. 5 приводится совмещенный график изменения силы N по двум вариантам. Видно, что устраняется недостаток начального этапа ударного взаимодействия, и в дальнейшем графики практически полностью совпадают.

С целью изучения закономерностей поведения предлагаемой модели был выполнен комплекс компьютерных экспериментов. При проведении вычислительных экспериментов был использован ортогональный центральный композиционный планы. Плечо «звездных» точек принималось на уровне -1, +1 (центрированные звездные точки). Уравнение регрессии для трехфакторного эксперимента в общем виде выглядит следующим образом:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + + b_{11} X_1^2 + b_{22} X_2^2 + b_{33} X_3^2 + + b_{12} X_1 X_2 + b_{13} X_1 X_3 + b_{23} X_2 X_3.$$

Таблица 2

	$npu \ F_{\mathcal{A} \mathcal{H} C} = C(\dot{y}_1 - \dot{y}_2)(y_1 - y_2)$												
Nº	X ₁	<i>X</i> ₂	<i>X</i> ₃	<i>Т_К</i> (мкс)	$\stackrel{\wedge}{T_K}_{(MKC)}$	dH	$d \hat{H}$	dY	$d\hat{Y}$	N _{max} (H)	N _{max} (H)	K _{TN max}	$\stackrel{\wedge}{K_{TN\max}}$
	ф	уровні рактор	и ов										
1	-1	-1	-1	67,11	66,63	0,414	0,427	0,520	0,508	116,10	115,48	0,58	0,57
2	-1	-1	1	53,55	53,21	0,802	0,807	0,120	0,114	173,37	176,37	0,50	0,49
3	-1	1	-1	58,08	58,09	0,654	0,650	0,300	0,304	153,18	154,48	0,53	0,52
4	-1	1	1	53,34	54,12	0,816	0,806	0,110	0,120	175,21	169,50	0,50	0,50
5	1	-1	-1	54,3	53,43	0,277	0,288	0,670	0,658	130,88	136,86	0,63	0,62
6	1	-1	1	38,7	38,60	0,710	0,715	0,220	0,214	231,08	230,05	0,52	0,51
7	1	1	-1	43,89	44,14	0,524	0,520	0,440	0,444	192,31	189,58	0,57	0,57
8	1	1	1	38,37	38,76	0,735	0,723	0,200	0,210	236,00	236,89	0,52	0,52
9	-1	0	0	54,87	54,87	0,747	0,743	0,180	0,182	166,07	168,08	0,51	0,51
10	1	0	0	40,29	40,59	0,633	0,632	0,300	0,302	215,61	212,47	0,54	0,54
11	0	-1	0	45,81	47,58	0,652	0,618	0,270	0,304	190,65	183,29	0,53	0,53
12	0	1	0	44,85	43,39	0,706	0,734	0,230	0,200	199,99	206,21	0,52	0,51
13	0	0	-1	51,18	52,25	0,500	0,483	0,460	0,474	162,33	158,38	0,57	0,57
14	0	0	1	43,62	42,86	0,763	0,775	0,170	0,160	209,66	212,48	0,51	0,50
15	0	0	0	45,27	44,95	0,683	0,688	0,250	0,245	196,03	197,15	0,53	0,52

Матрица планирования и результатов эксперимента

Для расчета коэффициентов уравнений регрессии, проведения статистической оценки значимости коэффициентов с помощью критерия Стьюдента ($t_{\kappa\rho}$) и проверки адекватности модели использовался программный комплекс «STATISTICA». Проверка адекватности моделей производилась по *F*-критерию (критерию Фишера) при уровне значимости P = 0.05.

В качестве исследуемых факторов рассматривались упругий параметр модели K_1 и коэффициенты K_2 , f_2 (размерность MH/M^n). Диапазон изменения упругого параметра модели K_1 соответствовал диапазону изменения модуля упругости материала поверхности E_2 от 60000 МПа до 200000 МПа, что охватывает основные металлы, стали и сплавы. В качестве сферического тела был принят стальной шарик с параметрами $E_1=2x10^5$ МПа; $\mu_1=0,27$; $R_1=4,75$ мм. Высота падения составляла 30 мм, коэффициент Пуассона для поверхности принимался $\mu_2=0,27$, коэффициент демпфирования v=100. Показатели степени на модели принимались неизменными: $a_1=1$; $a_2=1$; $n_1=1,5$; $n_2=1,5$; $n_3=1$. Уровни факторов и интервалы их варьирования представлены в таблице 1. При выборе уровней варьирования факторов K_2 и f_2 использовались результаты предшествующих исследований.

Таблица 3

	b_0	b_1	b_2	b_3	b_{11}	b_{22}	<i>b</i> ₃₃	b_{12}	b_{13}	b_{23}
$N_{ m max}$	197,15	22,19	11,46	27,05	-6,87	-2,39	-11,72	3,42	8,07	-11,46
$K_{TN \max}$	0,526	0,016	- 0,012	- 0,033	0,0007	0,0007	0,0157	- 0,0013	- 0,0063	0,0138
T_{K}	44,95	-7,14	-2,09	-4,70	2,78	0,53	2,605	-0,188	-0,353	2,363
d H	0,687	- 0,055	0,058	0,146	- 0,0002	-0,012	-0,059	0,0022	0,0117	-0,056
dY	0,245	0,060	0,052	- 0,157	0,0027	0,0072	0,072	0,0025	0,0125	0,0525

Коэффициенты уравнения регрессии при $F_{\text{ДИС}} = C(\dot{y}_1 - \dot{y}_2)(y_1 - y_2)$

Таблица 4

	b_0	b_1	b_2	b_3	b_{11}	b_{22}	<i>b</i> ₃₃	b_{12}	<i>b</i> ₁₃	b_{23}
$N_{ m max}$	197,03	21,84	11,49	27,13	-6,78	-2,41	-11,69	3,37	7,913	-11,48
$K_{TN \max}$	0,5368	0,012	-0,012	-0,031	0,001	0,002	0,0166	-0,0024	-0,0059	0,0125
T_{K}	44,17	-7,002	-2,079	-4,67	2,73	0,55	2,59	-0,18	-0,345	2,34
d H	0,688	-0,062	0,059	0,148	0,002	-0,012	-0,059	0,001	0,009	-0,056
dY	0,245	0,061	-0,053	-0,157	-0,002	0,001	0,071	-0,002	-0,014	0,053

Коэффициенты уравнения регрессии при $F_{\Pi UC} = C(\dot{y}_1 - \dot{y}_2)$

Таблица 5

Матрица планирования эксперимента при $F_{\text{дис}} = C(\dot{y}_1 - \dot{y}_2)(y_1 - y_2)^{\frac{3}{2}}$

N⁰	X_1	X_2	X_3	<i>Т_к</i> (мкс)	dH	dY	N _{max} (H)	$K_{_{TN\mathrm{max}}}$
		уровни факторов	3					
1	-1	-1	-1	67,14	0,415	0,52	116,15	0,58
2	-1	-1	1	53,61	0,800	0,12	173,32	0,50
3	-1	1	-1	58,14	0,654	0,30	153,20	0,53

							1	
4	-1	1	1	53,37	0,814	0,11	175,14	0,50
5	1	-1	-1	54,30	0,279	0,67	130,94	0,63
6	1	-1	1	38,70	0,714	0,22	231,40	0,52
7	1	1	-1	43,89	0,527	0,44	192,50	0,57
8	1	1	1	38,37	0,739	0,20	236,34	0,52
9	-1	0	0	54,93	0,746	0,18	166,05	0,51
10	1	0	0	40,29	0,637	0,30	215,88	0,53
11	0	-1	0	45,84	0,654	0,27	190,84	0,53
12	0	1	0	44,88	0,708	0,23	200,19	0,52
13	0	0	-1	51,18	0,502	0,46	162,47	0,57
14	0	0	1	43,65	0,765	0,17	209,86	0,51
15	0	0	0	45,27	0,685	0,25	196,23	0,52

Продолжение таблицы 5

Рассмотрено влияние факторов на продолжительность ударного взаимодействия (временя удара T_{K}), выполнены эксперименты по определению высоты отскока сферического тела $dH = H_{O}/H_{\Pi}$

(где H_{0} – высота отскока, H_{Π} – высота падения) и по определению dY. В ходе исследования рассчитывалась полная деформация Y_{max} (y_1), состоящая из упругой Y_{ynp} ($y_1 - y_2$) и пластической Y_{nn} (y_2) составляющих.Далее определялась величина $dY = Y_{nn} / Y_{max}$, характеризующая величину пластической составляющей по отношению к полной деформации. Приводятся результаты экспериментов по определению максимальной величины силы нормальной реакции модели $N_{\rm max}$ и коэффициента К_{ТNmax}, который определялся из соотношения Т_{Nmax}/Т_К. В ходе исследования определялось время *T*_{Nmax}, соответствующее максимальному значению силы нормальной реакции в процессе ударного взаимодействия модели с опорной поверхностью. Матрица планирования и результатов экспериментов представлена в таблице 2 (где \hat{T}_{K} , $d\hat{H}$, $d\hat{Y}$,

 N_{max} , $K_{TN \text{max}}$ – параметры, рассчитанные по уравнениям регрессии).

В результате эксперимента и выполненных на ПК расчетов были получены коэффициенты уравнений регрессии для кодированных значений факторов (таблица 3). Выделенные в таблице 3 коэффициенты являются незначимыми, т. е. в рассматриваемом диапазоне значений они не оказывают существенного влияния. Статистический анализ показал, что полученные уравнения регрессии адекватны. Для сравнения в таблице 4 приводятся коэффициенты уравнений регрессии, полученные ранее для модели с вязким параметром

 $F_{\text{дис}} = C(\dot{y}_1 - \dot{y}_2)$. Сравнительный анализ показывает, что наибольшее расхождение не превышает нескольких процентов.

Был также рассмотрен вариант, при котором использована упруго-вязкая аналогия при расчете упругих и вязких сопротивлений модели в зависимости от величины деформации

в степени 3/2: $F_{\text{дис}} = C(\dot{y}_1 - \dot{y}_2)(y_1 - y_2)^{\frac{3}{2}}$. Матрица планирования эксперимента приводится в таблице 5. Сравнение значений свидетельствует о несущественном влиянии показателя степени при у на параметры динамического взаимодействия модели.

Таким образом, результаты исследований позволяют рекомендовать к практическому использованию более точную и достоверную модель, диссипативные сопротивления которой пропорциональны скорости и величине упругой деформации.

Литература

1. Лапшин В.Л., Ященко В.П., Рудых А.В. Исследовательская модель процесса ударного взаимодействия сферического тела с плоской поверхностью рудного материала // Вестн. ИрГТУ. 2006. №2 (26). С. 110-115.

2. Лапшин В.Л., Демаков Е.И. Упруговязко-пластичная механореологическая модель для оценки упруго-вязких свойств минералов при моделировании процессов вибросепарации // VI Всерос. науч. -техн. конф. с междунар. участием «Механика – XXI веку»: сб. докл. Братск, 2007. С. 67–71.

3. Влияние упруго-пластических параметров блока механореологической модели на силу ударного взаимодействия сферического тела с плоской поверхностью / В.Л. Лапшин, В.П. Ященко, А.Ю. Перелыгина, Е.И. Демаков // Современные технологии, системный анализ, моделирование. 2009. Вып. 2 (22). С. 36-41.

4. Лапшин В.Л., Глухов А.В. Компьютерное исследование упруго-вязко-пластичной механореологической модели // Современная техника и технологии: исследования и раработки: сб. докл. Междунар. науч. заочной конф. Липецк, 2011. С. 20-27.

УДК 621.878

Ю.А. Геллер

ВЛИЯНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ГРУНТА НА ЧАСТОТУ КОЛЕБАНИЙ РАБОЧЕГО ОРГАНА РЫХЛИТЕЛЯ С АККУМУЛЯТОРОМ ЭНЕРГИИ

В работе проведен анализ формирования грунтовых элементов при взаимодействии рабочего органа рыхлителя с аккумулятором энергии. Рассмотрено влияние упругой связи на характер разрушения грунта и перераспределение зон упругой и пластической деформации при формировании грунтовых элементов. Представлена аналитическая зависимость, устанавливающая взаимосвязь между механическими свойствами грунта и параметрами ведения земляных работ.

Ключевые слова: рыхлительное оборудование, базовая машина, прочный грунт, замыкание динамической нагрузки, энергоемкость процесса, аккумулирование, угол внутреннего трения, касательные нагрузки.

Рыхлитель с аккумулятором энергии относится к классу машин, работа которых основана на принципе замыкания динамических нагрузок на рыхлительном оборудовании и грунте [1 – 8].

Эффективность процесса разработки грунта рыхлителем с аккумулятором характеризуется двумя основными моментами.

С одной стороны, применение аккумулятора энергии оказывает влияние на механизм образования грунтовых элементов, вызывая изменение соотношения между зонами пластического деформирования и хрупкого разрушения, возникающего при отделении элементов от грунтового массива. С другой – оказывает влияние на перераспределение энергии, высвобождаемой в результате резкого изменения сил сопротивления грунта разрушению в период между очередным отделением грунтового элемента и формированием нового. Важную роль при этом оказывают параметры рыхлительного оборудования и режимы ведения земляных работ.

При оценке параметров процесса влияние обоих моментов взаимосвязано, и определить ожидаемый эффект по одному из них невозможно.

Последовательность формирования элементов грунтовой стружки при передаче энергии на рабочий орган через упругую связь в целом подобна их образованию при жесткой связи рабочего органа с элементами навески рыхлительного оборудования, но некоторые моменты, свойственные упругой связи, предъявляют определенные условия к процессу разрушения мерзлого грунта.

Изучение физической сущности процесса отделения грунтовых элементов от массива проводилось тензометрированием касательной составляющей сопротивления грунта разрушению с записью процесса на осциллографическую ленту, а также фотосъемкой этапов