УДК 66.046

Моделирование свойств древесно-композиционных материалов методом параметрической идентификации

Д.Б. Просвирников

Казанский национальный исследовательский технологический университет, ул. К. Маркса, 68, Казань, Республика Татарстан prosvirnikov_dmi@mail.ru https://orcid.org//0000-0002-6736-8788 Статья поступила 07.10.2020, принята 02.11.2020

Приведены результаты моделирования свойств древесных композиционных плитных материалов (ДКМ) без связующих, изготовленных на основе непромытых, активированных паровзрывной обработкой лигноцеллюлозных волокон. Описаны методики проведения эксперимента, а также определения физических свойств полученных плитных материалов. Представлена математическая обработка экспериментальных данных по свойствам ДКМ (плотность, предел прочности), проводившаяся в соответствии с методикой параметрической идентификации статистических моделей многофакторных экспериментов в программной среде CurveExpert. Данная методика используется для обработки экспериментальных данных с получением математических выражений в экспоненциальной и показательной форме (реже в линейной), законы которых имеют физический смысл, в отличие от полиномиальных моделей, полученных в результате регрессионного анализа. Составлена трехфакторная статистическая модель влияния давления прессования и температуры прессования на плотность и прочность ДКМ на основе непромытых активированных волокон. Исследования показали, что температура прессования и давление прессования способствуют повышению плотности и прочности образцов. Результаты моделирования подтверждают эффективность применения метода параметрической идентификации, позволяющего получать модели зависимости выходных величин от множества факторов, при этом модели имеют низкую относительную погрешность и записаны с использованием математических конструктов, имеющих физический смысл. Итоговые погрешности по многофакторным моделям плотности ДКМ из непромытых образцов составляют: абсолютная погрешность модели — 31,7 кг/м³, относительная погрешность модели — 1,91 %; по прочности: абсолютная погрешность модели — 0,08 МПа, а относительная погрешность — 0,15 %.

Ключевые слова: древесно-композиционный материал; моделирование; паровзрывная обработка; активированные волокна; плитный материал; плотность; предел прочности; параметрическая идентификация.

Modeling the properties of wood-composite materials by parametric identification

D.B. Prosvirnikov

Kazan National Research Technological University; 68, Karl Marks St., Kazan, Russia, Republic of Tatarstan prosvirnikov_dmi@mail.ru https://orcid.org//0000-0002-6736-8788 Received 07.10.2020, accepted 02.11.2020

This article presents the results of modeling the properties of wood composite board materials without binders, made on the basis of unwashed lignocellulose fibers activated by steam explosion treatment. The experimental technique is described, as well as the technique for determining the physical properties of the obtained board materials. The paper presents mathematical processing of experimental data on the properties of wood composite board materials (density, ultimate strength), carried out in accordance with the method of parametric identification of statistical models of multivariate experiments in the CurveExpert software environment. This technique is used to process experimental data with obtaining mathematical expressions in exponential and exponential form (less often in linear), the laws of which have physical meaning, in contrast to polynomial models obtained as a result of regression analysis. A three-factor statistical model of the influence of pressing pressure and pressing temperature on the density and strength of wood composite board materials based on unwashed activated fibers has been compiled. The research results have showen that the pressing temperature and pressing pressure contribute to an increase in the density and strength of the samples. The simulation results have shown the effectiveness of the parametric identification method, which makes it possible to obtain models of the dependence of the output quantities on a variety of factors, while the models have a low relative error, and are written using mathematical constructs that have physical meaning. The final errors for multivariate models of the density of DCM from unwashed samples are: the absolute error of the model is $31.7 \text{ kg}/m^3$, the relative error of the model is 1.91%; by strength: the absolute error of the model is 0.15%.

Keywords: wood-composite material; steam-blasting treatment; non-washed activated fibers; slab material; density; ultimate strength; parametric identification.

Введение. Природные и природно-антропогенные процессы зачастую являются объектами статистических исследований. При этом реальные явления и процессы, происходящие в природе, могут выражаться словесно (эвристическая модель), структурно (эвроритмическая модель) или математически (математическая модель) в виде устойчивых законов и закономерностей [1-4]. К одному из таких законов можно отнести биотехнический закон, гласящий, что в процессах жизнедеятельности и эволюции биологических и биогенных объектов действие не равно противодействию. Биотехнический закон определяет изменение только скалярной величины сил взаимодействия, не затрагивая направление сил [5]. Статистическим исследованиям подвергается только экспериментальное изучение изменений величины, т. е. скалярных значений этих сил взаимодействия [6; 7]. Биотехнический закон может применяться для описания процессов рационального природопользования: лесопользования, переработки древесного сырья в готовые изделия, в частности древесно-композиционные материалы и т. д.

Структуры, формы описания модели биотехнического закона и оценки ее параметров, имеющих фиксированное количество и положение в структуре модели, определяется параметрической идентификацией [8–11].

Идентификация моделей (зависимости выходной величины от одного или нескольких факторов) по экспериментальным данным подразумевает подбор конструкции математических выражений, законов, имеющих физический смысл (линейный, экспоненциальный, степенной), по характеру наблюдаемого хода процесса (рост, гибель/затухание, совмещение противодействующих процессов, имеющее экстремумы). После определения характера протекания процесса, для чего необходимы достаточные массивы данных, с помощью программного обеспечения определяются коэффициенты выражений, а также происходит усложнение базовой модели с достижением максимально возможной степени корреляции. Полученные выражения, аппроксимированные по экспериментальным данным, являются наиболее точными с точки зрения описания процессов, поскольку имеют в своем составе математические конструкты, характеризующие ход процесса. Подобное описание невозможно провести с использованием полиномиальных моделей, получаемых в результате регрессионного анализа или простой полиномиальной аппроксимации, например в среде MS Excel.

Целью исследования является моделирование свойств древесно-композиционных материалов (ДКМ) (плотность, предел прочности), изготовленных на основе непромытых, активированных паровзрывной обработкой лигноцеллюлозных волокон, методом параметрической идентификации.

Методика проведения экспериментальных исследований. В качестве исходного сырья использовалась древесина осины, измельченная до размеров частиц 10 x 10 x 5 мм, с начальным влагосодержанием 60 %. Измерение влажности всех образцов проводили весовым методом. Волокнистую активированную лигноцеллюлозную массу получали методом паровзрывной обработки в реакторе периодического и непрерывного действия при температуре насыщенного водяного пара (температуры паровзрывной обработки) 180-220 °С в течение 10 мин [12; 13]. В реакторе непрерывного действия частота оборотов вала шнека составляла 1-3 об./мин, регулируемая частотным преобразователем. Собранный в выдувном резервуаре активированный паровзрывной обработкой материал сушился при температуре 102±3 °С до влагосодержания 30-40 % в сушильном шкафу UT-4630V без предварительной промывки [14]. Прессование полученной активированной массы производили на компактном лабораторном прессе с рабочей зоной 300 × 300 мм при давлениях P_п 8–16 МПа и температурах прессования $t_{\rm n}$ 100–220 °C с шагом в 40 °С в течение 3-7 мин. Для получения образцов использовалась стальная форма с рабочей площадью 50 x 150 мм и соответствующим поршнем. Подготовленный материал помещали в предварительно нагретые до 100 °С формы для прессования и располагали под поршнем. Механические испытания по определению предела прочности образцов проводили на испытательном стенде ИС-1 [15; 16]. Плотность определяли объемно-весовым методом. Математическая обработка экспериментальных данных по свойствам ДКМ (плотность, предел прочности) проводилась в соответствии с методикой параметрической идентификации статистических моделей многофакторных экспериментов в программной среде CurveExpert [17]. Данный метод используется для обработки экспериментальных данных с получением математических выражений в экспоненциальной и показательной форме (реже в линейной), законы которых имеют физический смысл. Например, снижение температуры при остывании является затухающим процессом, при котором температура материала сравнивается с температурой окружающей среды. Такой процесс, а точнее, полученные и измеренные экспериментальные данные нельзя аппроксимировать полиномами 1-го, 2-го и л-го порядка с целью получения регрессионной модели, поскольку полиномиальные законы не могут придать физический смысл реально изучаемым процессам. Поскольку уравнения и законы, на базе которых строится параметрическая модель предлагаемым методом, имеют физический смысл, используются законы экспоненциального и степенного роста и гибели, а также их совокупность в форме биотехнического закона [18]. Как правило, все процессы характеризуются волновой составляющей, что говорит о том, что получаемые модели реальных процессов с применением биотехнического закона наиболее полно описывают многофакторный физический процесс [19].

Результаты и обсуждение. Для удобства моделирования и параметрической идентификации плотности ДКМ из непромытых активированных волокон данные сведены в табл. 1.

Для установления трехфакторной статистической модели (влияние давления прессования, температуры паровзрывной обработки, температуры прессования на плотность ДКМ) необходимо выявить однофакторные зависимости [20], т. е. влияние каждого фактора на выходную величину по отдельности.

Определим характер влияния температуры прессования на плотность ДКМ. Подбираем модель в про-

грамме CurveExpert, определяем коэффициенты статистической модели путем идентификации:

Exponential Fit: $y=ae^{(bx)}$ Coefficient Data: a = 9.50905373200E + 002

 $b=\ 1.65531521140E-003.$

Коэффициент корреляции для данной модели составляет 0,66666.

Выражение, описывающее влияния температуры прессования на плотность ДКМ:

$$c = 950,9\exp(0,0016t_{\rm n}) \tag{1}$$

Таблица 1. Данные для моделирования и параметрической идентификации плотности ДКМ из непромытых активированных волокон

P_n , МПа	$t_{no}, ^{\circ}\mathrm{C}$	$t_n, \circ \mathbf{C}$	р, кг/м ³	$P_n, M\Pi a$	$t_{no}, \circ C$	$t_n, \circ \mathbf{C}$	р, кг/м ³
8	180	100	900	12	200	140	1 190
8	180	140	1 000	12	200	180	1 300
8	180	180	1100	12	200	220	1 360
8	180	220	1 281	12	220	100	1 221
8	200	100	950	12	220	140	1 310
8	200	140	1 150	12	220	180	1 360
8	200	180	1 230	12	220	220	1 392
8	200	220	1 320	16	180	100	1 150
8	220	100	1 110	16	180	140	1 260
8	220	140	1 250	16	180	180	1 315
8	220	180	1 325	16	180	220	1 342
8	220	220	1 388.5	16	200	100	1 250
12	180	100	990	16	200	140	1 309
12	180	140	1 100	16	200	180	1 375
12	180	180	1 210	16	200	220	1 405
12	180	220	1 310	16	220	100	1 351
12	200	100	1.045	16	220	140	1 360

Рис. 1. Идентификация статистической модели, описывающей влияние температуры прессования на плотность ДКМ

 $\langle \mathbf{a} \rangle$

На рис. 1 представлена модель (1) (*a*) и отклонения (б). Определим характер влияния температуры паровзрывной обработки на плотность ДКМ. Подбираем модель, определяем коэффициенты статистической модели путем идентификации:

Coefficient Data:

Exponential Fit: $y=ae^{(bx)}$ a = 6.48276295902E+002

b = 3.24629713109E-003

Коэффициент корреляции для данной модели составляет 0,4755.

$$c = 648,27\exp(0,00324t_{\text{mo}})$$
 (2)

На рис. 2 представлена модель (2) (*a*) и отклонения (б). Далее определим характер влияния давления прессования на плотность ДКМ. Подбираем модель, определяем коэффициенты статистической модели путем идентификации:

Exponential Fit: $y=ae^{(bx)}$ Coefficient Data: a = 6.48276295902E+002

b = 3.24629713109E-003

Коэффициент корреляции для данной модели составляет 0,4771.

$$c = 1020,29\exp(0,0163P_{\rm m}) \tag{3}$$

Рис. 3. Идентификация статистической модели, описывающей влияние давления прессования на плотность ДКМ

На рис. 3 представлена модель (3) (*a*) и отклонения (б). Для удобства дальнейшей идентификации обобщенной статистической модели для каждого фактора были определены значения абсолютных отклонений. В табл. 2 представлены абсолютные отклонения по моделям (1), (2), (3).

Таблица 2. Абсолютные отклонения для однофакторных статистических моделей

<i>t</i> _{<i>n</i>} , °C	р, кг/м ³	$t_n, ^{\circ}C$	ε, <i>кг/м³</i>	$t_{no},$ °C	р, кг/м ³	<i>t_{no}</i> , °C	ε, <i>кг/м³</i>	Р _n , МПа	ρ, кг/м ³	Р _n , МПа	ε, <i>кг/м³</i>
100	900	100	-222.088	180	900	180	-262.875	8	900	8	-262.492
140	1 000	140	-198.899	180	1 000	180	-162.875	8	1 000	8	-162.492
180	1 100	180	-180.968	180	1 100	180	-62.8748	8	1 100	8	-62.492
220	1 281	220	-87.6552	180	1281	180	118.125	8	1 281	8	118.508
100	950	100	-172.088	200	950	200	-290.88	8	950	8	-212.492
140	1 150	140	-48.8987	200	1 150	200	-90.8804	8	1 150	8	-12.492
180	1 230	180	-50.968	200	1 230	200	-10.8804	8	1 230	8	67.508
220	1 320	220	-48.6552	200	1 320	200	79.1196	8	1 320	8	157.508
100	1 1 1 0	100	-12.0875	220	1 110	220	-214.119	8	1 110	8	-52.492
140	1 250	140	51.1013	220	1 250	220	-74.1187	8	1 250	8	87.508
180	1 325	180	44.032	220	1 325	220	0.881337	8	1 325	8	162.508
220	1 388.5	220	19.8448	220	1 388.5	220	64.3813	8	1 388.5	8	226.008
100	990	100	-132.088	180	990	180	-172.875	12	990	12	-250.858
140	1 100	140	-98.8987	180	1 100	180	-62.8748	12	1 100	12	-140.858
180	1 210	180	-70.968	180	1 210	180	47.1252	12	1 210	12	-30.858

	1			1		1					
220	1 310	220	-58.6552	180	1 310	180	147.125	12	1 310	12	69.142
100	1 045	100	-77.0875	200	1 045	200	-195.88	12	1 045	12	-195.858
140	1 190	140	-8.89872	200	1 190	200	-50.8804	12	1 190	12	-50.858
180	1 300	180	19.032	200	1 300	200	59.1196	12	1 300	12	59.142
220	1 360	220	-8.65516	200	1 360	200	119.12	12	1 360	12	119.142
100	1 221	100	98.9125	220	1 221	220	-103.119	12	1 221	12	-19.858
140	1 310	140	111.101	220	1 310	220	-14.1187	12	1 310	12	69.142
180	1 360	180	79.032	220	1 360	220	35.8813	12	1 360	12	119.142
220	1 392	220	23.3448	220	1 392	220	67.8813	12	1 392	12	151.142
100	1 150	100	27.9125	180	1 150	180	-12.8748	16	1 150	16	-174.507
140	1 260	140	61.1013	180	1 260	180	97.1252	16	1 260	16	-64.5068
180	1 315	180	34.032	180	1 315	180	152.125	16	1 315	16	-9.50685
220	1 342	220	-26.6552	180	1 342	180	179.125	16	1 342	16	17.4932
100	1 250	100	127.912	200	1 250	200	9.11959	16	1 250	16	-74.5068
140	1 309	140	110.101	200	1 309	200	68.1196	16	1 309	16	-15.5068
180	1 375	180	94.032	200	1 375	200	134.12	16	1 375	16	50.4932
220	1 405	220	36.3448	200	1 405	200	164.12	16	1 405	16	80.4932
100	1 351	100	228.912	220	1 351	220	26.8813	16	1 351	16	26.4932
140	1 360	140	161.101	220	1 360	220	35.8813	16	1 360	16	35.4932
180	1 400	180	119.032	220	1 400	220	75.8813	16	1 400	16	75.4932
220	1 425	220	56.3448	220	1 425	220	100.881	16	1 425	16	100.493

Для оценки значимости однофакторных зависимостей ранжируем модели по коэффициенту корреляции по возрастанию:

1) температура паровзрывной обработки на плотность — 0.4755;

2) давление прессования на плотность — 0.4771;

3) температура прессования на плотность — 0.6666.

Поскольку модель (2) имеет наименьший порядок ранжирования, оценим вклад в общую модель давления прессования $P_{\rm n}$. Для этого построим зависимость вида $\varepsilon_{\rm mo} = f(P_{\rm n})$, где $\varepsilon_{\rm mo}$ — отклонения по модели (2). Давле-

ние прессования $P_{\rm n}$ выбрано в качестве влияющей переменной для отклонений по модели (2).

User-Defined Model: y=a*x^b

Coefficient Data:

a = 1.29099604063E-004

b = 4.79116794833E+000 Полученное выражение:

$$\varepsilon_{\text{tno}} = 0,000129 P_{\Pi}^{4,791}.$$
 (4)

На рис. 4 представлена модель (4) (a) и отклонения (b).

Рис. 4. Идентификация статистической модели, описывающей влияние давления прессования на отклонения по модели (2)

Влияющей переменной для модели (4) является температура прессования как более высокая величина по значимости. Построим зависимость вида $\varepsilon_{tnoPn} = f(t_n)$,

где $\mathcal{E}_{t = 0} - 0$ тклонения по модели (4).

User-Defined Model: y=a*x^b

a = -5.83772191926E+006b = -2.32007250648E+000.

$$\boldsymbol{\varepsilon}_{t_{\Pi 0, t_{\Pi}}} = -5837721, 9t_{\Pi}^{-2, 32}.$$
 (5)

На рис. 5 представлена модель (2) (a) и отклонения (b).

Рис. 5. Идентификация статистической модели, описывающей влияние температуры прессования на отклонения по модели (4)

Общая трехфакторная модель примет вид: $c = 648,27 \exp(0,00324 t_{\rm no}) + 0,000129 P_{\rm n}^{4,791} - (6)$ 5837721,9 $t_{\rm n}^{-2,32}$.

Относительная погрешность модели представлена в табл. 3.

Таблица З. О	тносительная	погрешность	трехфакторной	статистическо	й модели і	плотности	ДКМ
			ł	із непромытых	активирон	ванных вол	окон

P_n , MПa	$t_{no}, \circ \mathbf{C}$	$t_n, \circ \mathbf{C}$	р, кг/м ³	р , кг/м ³	ε, <i>κг/м</i> ³	Δ, %
8	180	100	900	1 030,549	130,5488	14,50542
8	180	140	1 000	1 103,016	103,0163	10,30163
8	180	180	1 100	1 130,084	30,08443	2,734949
8	180	220	1 281	1 142,814	-138,186	-10,7874
	200	100	950	1 108,309	158,3092	16,66413
8	200	140	1 150	1 180,777	30,77672	2,676236
8	200	180	1 230	1 207,845	-22,1551	-1,80123
8	200	220	1 320	1 220,574	-99,4259	-7,53226
8	220	100	1 110	1 191,275	81,27534	7,322102
8	220	140	1 250	1 263,743	13,74285	1,099428
8	220	180	1 325	1 290,811	-34,189	-2,5803
8	220	220	1 388,5	1 303,54	-84,9597	-6,11881
12	180	100	990	10 46,908	56,90786	5,748269
12	180	140	1 100	1 119,375	19,37538	1,761398
12	180	180	1 210	1 146,444	-63,5565	-5,2526
12	180	220	1 310	1 159,173	-150,827	-11,5135
12	200	100	1 045	1 124,668	79,66828	7,623759
12	200	140	1 190	1 197,136	7,135801	0,599647
12	200	180	1 300	1 224,204	-75,7961	-5,83047
12	200	220	1 360	1 236,933	-123,067	-9,04903
12	220	100	1 221	1 207,634	-13,3656	-1,09464
12	220	140	1 310	1 280,102	-29,8981	-2,28229
12	220	180	1 360	1 307,17	-52,8299	-3,88455
12	220	220	1 392	1 319,899	-72,1006	-5,17964
16	180	100	1 150	1 103,587	-46,4129	-4,0359
16	180	140	1 260	1 176,055	-83,9454	-6,66233
16	180	180	1 315	1 203,123	-111,877	-8,50777
16	180	220	1 342	1 215,852	-126,148	-9,4
16	200	100	1 250	1 181,348	-68,6525	-5,4922
16	200	140	1 309	1 253,815	-55,185	-4,21581

P_n , МПа	$t_{no}, \circ \mathbf{C}$	t_n , °C	р, кг/м ³	р , кг/м ³	ε, <i>κ</i> ε/ <i>м</i> ³	Δ, %
16	200	180	1 375	1 280,883	-94,1168	-6,84486
16	200	220	1 405	1 293,612	-111,388	-7,92794
16	220	100	1 351	1 264,314	-86,6863	-6,41646
16	220	140	1 360	1 336,781	-23,2188	-1,70727
16	220	180	1 400	1 363,849	-36,1507	-2,58219
16	220	220	1 425	1 376,579	-48,4214	-3,39799

Для удобства моделирования и параметрической идентификации предела прочности ДКМ из непромы-

тых активированных волокон данные сведены в табл. 4. На рис. 6 представлена модель (7) (*a*) и отклонения (*б*).

Таблица 4. Данные для моделирования и параметрической идентификации предела прочности на изгиб ДКМ из непромытых активированных волокон

P_n , МПа	$t_{no}, \circ \mathbf{C}$	$t_n, \circ \mathbf{C}$	[σ] _{изг} , МПа	P_n , $M\Pi a$	$t_{no}, \circ \mathbf{C}$	$t_n, \circ \mathbf{C}$	[σ] _{изг} , МПа
8	180	100	22,5	12	200	140	36
8	180	140	31	12	200	180	40
8	180	180	34	12	200	220	39
8	180	220	34	12	220	100	36
8	200	100	27,5	12	220	140	39
8	200	140	35	12	220	180	40
8	200	180	36,3	12	220	220	38
8	200	220	36,2	16	180	100	30
8	220	100	31	16	180	140	32
8	220	140	36	16	180	180	34
8	220	180	38	16	180	220	34,5
8	220	220	34	16	200	100	34
12	180	100	26	16	200	140	38
12	180	140	29	16	200	180	41
12	180	180	30	16	200	220	42
12	180	220	28	16	220	100	40
12	200	100	32	16	220	140	43

Для установления трехфакторной статистической модели (влияние давления прессования, температуры паровзрывной обработки, температуры прессования на предел прочности на изгиб ДКМ) необходимо выявить однофакторные зависимости.

Определим характер влияния температуры прессования на предел прочности на изгиб ДКМ. Подбираем модель, определяем коэффициенты статистической модели путем идентификации:

User-Defined Model: $y=a*x^b$ Coefficient Data: a = 1.16694195884E+001b = 2.18920287251E-001User-Defined Model: $y=a*x^b*exp(-c*x)$ Coefficient Data: a = 7.80102064280E--001b = 8.98584200376E-001c = 4.47565527960E-003User-Defined Model: $y=a*x^b*exp(-c*x^d)$ Coefficient Data: a = 4.25375480076E-001b = 1.02178038053E+000

c = 1.96409566795E-003

 $d=\ \ 1.16458436958E{+}000.$

Коэффициент корреляции для данной модели составляет 0,4876.

Выражение, описывающее влияние температуры прессования на предел прочности на изгиб ДКМ:

$$[\mathbf{y}]_{_{\rm H3T}} = 0.425 t_{\rm n}^{-1.021} \exp\left(-0.00196 t_{\rm n}^{-1.164}\right).$$
7)

Определим характер влияния давления прессования паровзрывной обработки на предел прочности на изгиб ДКМ. Подбираем модель, определяем коэффициенты статистической модели путем идентификации:

Exponential Fit: y=ae^(bx) Coefficient Data: a = 2.80142271909E+001 b = 1.88551179017E-002.

Коэффициент корреляции для данной модели составляет 0,4147.

$$[\mathbf{y}]_{\text{W3T}} = 28,014 \exp(0,0188P_{\text{T}}). \tag{8}$$

На рис. 7 представлена модель (8) (*a*) и отклонения (б).

Рис. 6. Идентификация статистической модели, описывающей влияние температуры прессования на предел прочности на изгиб ДКМ

Рис. 7. Идентификация статистической модели, описывающей влияние температуры паровзрывной обработки на предел прочности на изгиб ДКМ

Рис. 8. Идентификация статистической модели, описывающей влияние давления прессования на предел прочности на изгиб ДКМ

Далее определим характер влияния температуры паровзрывной обработки на предел прочности на изгиб ДКМ. Подбираем модель, определяем коэффициенты статистической модели путем идентификации:

User-Defined Model: $y=a*x^b$ Coefficient Data: a = 7.03691046662E-002 b = 1.17288074570E+000 User-Defined Model: y=a*x^b*exp(-c*x) Coefficient Data:

a = 5.44962331090E-002

b = 1.23463464679E+000

c = 3.56114116025E-004.

Коэффициент корреляции для данной модели со-

ставляет 0,6542.

$$[\mathbf{y}]_{\text{H3F}} = 0.0544 t_{\text{IIO}}^{1.234} \exp(-0.000356 t_{\text{IIO}}).$$
(9)

На рис. 8 представлена модель (9) (*a*) и отклонения (б).

Для удобства дальнейшей идентификации обобщенной статистической модели для каждого фактора были определены значения абсолютных отклонений.

В табл. 5 представлены абсолютные отклонения по моделям (3.7), (3.8), (3.9).

tп, ∘С	[σ]изг, <i>МПа</i>	tп, ∘C	ε, МПа	tпо, ∘ <i>С</i>	[σ]изг, <i>МПа</i>	tпо, ∘С	ε, МПа	Рп, <i>МПа</i>	[σ]изг, <i>МПа</i>	Рп, <i>МПа</i>	ε, МПа
100	22.5	100	-8.425351706	180	22.5	180	-8.61469481	8	22.5	8	-10.07527087
140	31	140	-4.670414333	180	31	180	-0.11469481	8	31	8	-1.575270872
180	34	180	-3.346769352	180	34	180	2.88530519	8	34	8	1.424729128
220	34	220	-2.837189515	180	34	180	2.88530519	8	34	8	1.424729128
100	27.5	100	-3.425351706	200	27.5	200	-7.685697191	8	27.5	8	-5.075270872
140	35	140	-0.670414333	200	35	200	-0.185697191	8	35	8	2.424729128
180	36.3	180	-1.046769352	200	36.3	200	1.114302809	8	36.3	8	3.724729128
220	36.2	220	-0.637189512	200	36.2	200	1.014302809	8	36.2	8	3.624729128
100	31	100	0.0746482945	220	31	220	-8.298668508	8	31	8	-1.575270872
140	36	140	0.3295856667	220	36	220	-3.298668508	8	36	8	3.424729128
180	38	180	0.6532306477	220	38	220	-1.298668508	8	38	8	5.424729128
220	34	220	-2.837189515	220	34	220	-5.298668508	8	34	8	1.424729128
100	26	100	-4.925351706	180	26	180	-5.11469481	12	26	12	-9.127135042
140	29	140	-6.670414333	180	29	180	-2.11469481	12	29	12	-6.127135042
180	30	180	-7.346769352	180	30	180	-1.11469481	12	30	12	-5.127135042
220	28	220	-8.837189515	180	28	180	-3.11469481	12	28	12	-7.127135042
100	32	100	1.074648294	200	32	200	-3.185697191	12	32	12	-3.127135042
140	36	140	0.3295856667	200	36	200	0.8143028088	12	36	12	0.8728649584
180	40	180	2.653230648	200	40	200	4.814302809	12	40	12	4.872864958
220	39	220	2.162810485	200	39	200	3.814302809	12	39	12	3.872864958
100	36	100	5.074648294	220	36	220	-3.298668508	12	36	12	0.8728649584
140	39	140	3.329585667	220	39	220	-0.298668507	12	39	12	3.872864958
180	40	180	2.653230648	220	40	220	0.7013314922	12	40	12	4.872864958
220	38	220	1.162810485	220	38	220	-1.298668508	12	38	12	2.872864958
100	30	100	-0.925351705	180	30	180	-1.11469481	16	30	16	-7.878905784
140	32	140	-3.670414333	180	32	180	0.88530519	16	32	16	-5.878905784
180	34	180	-3.346769352	180	34	180	2.88530519	16	34	16	-3.878905784
220	34.5	220	-2.337189515	180	34.5	180	3.38530519	16	34.5	16	-3.378905784
100	34	100	-8.425351706	200	34	200	-1.185697191	16	34	16	-3.878905784
140	38	140	-4.670414333	200	38	200	2.814302809	16	38	16	0.1210942162
180	41	180	-3.346769352	200	41	200	5.814302809	16	41	16	3.121094216
220	42	220	-2.837189515	200	42	200	6.814302809	16	42	16	4.121094216
100	40	100	-3.425351706	220	40	220	0.7013314922	16	40	16	2.121094216
140	43	140	-0.670414333	220	43	220	3.701331492	16	43	16	5.121094216
180	45	180	-1.046769352	220	45	220	5.701331492	16	45	16	7.121094216
220	45	220	-0.637189515	220	45	220	5.701331492	16	45	16	7.121094216

Для оценки значимости однофакторных зависимостей ранжируем модели по коэффициенту корреляции по возрастанию:

давление прессования на предел прочности — 0.4863;

2) температура прессования на предел прочности — 0.4876;

3) температура паровзрывной обработки на предел прочности — 0.6542.

Поскольку модель (8) имеет наименьший порядок ранжирования, оценим вклад в общую модель температуры прессования $t_{\rm n}$. Для этого построим зависимость

вида $\mathcal{E}_{P_{\Pi}}=f(t_{\Pi})$, где $\mathcal{E}_{P_{\Pi}}-$ отклонения по модели (8). Температура прессования t_{Π} выбрана в качестве влияющей переменной для отклонений по модели (8).

User-Defined Model: $y=a*x^b$ Coefficient Data: a = 2.82223495532E-007

b = 2.90718150990E+000 User-Defined Model: y=a*x^b*exp(-c*x)+d Coefficient Data:

a = 2.23677479217E-006

- b = 3.70389670218E+000
- c = 1.97436282832E-002

 $d=\ -1.21771565697E{+}001.$

$$\boldsymbol{\varepsilon}_{P_{\Pi}} = 0,00000223 t_{\Pi}^{3,703} \exp(-0,0197 t_{\Pi}) - 12,17.$$
 10)

На рис. 9 представлена модель (10) (а) и отклонения (б).

Рис. 9. Идентификация статистической модели, описывающей влияние температуры прессования на отклонения по модели (8)

Влияющей переменной для модели (7) является температура паровзрывной обработки, как более высокая величина по значимости. Построим зависимость вида

 $\epsilon_{P_{\Pi,f\Pi 0}} = f(t_{\Pi 0})$, где $\epsilon_{P_{\Pi,f\Pi 0}}$ – отклонения по модели (10).

Linear Fit: y=a+bx

Coefficient Data:

$$a = -4.16638798010E+001$$

 $b = 2.0833333331E-001.$

$$\boldsymbol{\varepsilon}_{P\Pi,t\Pi 0} = -41,66 + 0,208 t_{\Pi 0}.$$
 11)

:

На рис. 10 представлена модель (11) (a) и отклонения (δ).

Residuals

Рис. 10. Идентификация статистической модели, описывающей влияние температуры паровзрывной обработки на отклонения по модели (10)

Таблица 6. Относительная погрешность трехфакторной статистической модели предела прочности на изгиб ДКМ из непромытых активированных волокон

P_n , $M\Pi a$	$t_{no}, ^{\circ}\mathrm{C}$	$t_n, \circ \mathbf{C}$	[σ] _{изг} , МПа	$[\sigma]_{use}, M\Pi a$	ε, МПа	Δ, %
8	180	100	22,5	24,091	-1,591	-7,07112
8	180	140	31	28,69147	2,308533	7,446881
8	180	180	34	30,61076	3,389237	9,968343
8	180	220	34	29,97652	4,023484	11,83378
8	200	100	27,5	28,251	-0,751	-2,73092
8	200	140	35	32,85147	2,148533	6,138666
8	200	180	36,3	34,77076	1,529237	4,212773

8	200	220	36,2	34,13652	2,063484	5,700233
8	220	100	31	32,411	-1,411	-4,55162
8	220	140	36	37,01147	-1,01147	-2,80963
8	220	180	38	38,93076	-0,93076	-2,44938
8	220	220	34	38,29652	-4,29652	-12,6368
12	180	100	26	26,63398	-0,63398	-2,43839
12	180	140	29	31,23445	-2,23445	-7,70498
12	180	180	30	33,15374	-3,15374	-10,5125
12	180	220	28	32,51949	-4,51949	-16,141
12	200	100	32	30,79398	1,206019	3,768809
12	200	140	36	35,39445	0,605555	1,682097
12	200	180	40	37,31374	2,686258	6,715646
12	200	220	39	36,67949	2,320506	5,950015
12	220	100	36	34,95398	1,046019	2,905608
12	220	140	39	39,55445	-0,55445	-1,42165
12	220	180	40	41,47374	-1,47374	-3,68435
12	220	220	38	40,83949	-2,83949	-7,47235
16	180	100	30	29,37557	0,624435	2,081449
16	180	140	32	33,97603	-1,97603	-6,17509
16	180	180	34	35,89533	-1,89533	-5,57449
16	180	220	34,5	35,26108	-0,76108	-2,20602
16	200	100	34	33,53557	0,464435	1,365985
16	200	140	38	38,13603	-0,13603	-0,35797
16	200	180	41	40,05533	0,944674	2,304083
16	200	220	42	39,42108	2,578922	6,14029
16	220	100	40	37,69557	2,304435	5,761087
16	220	140	43	42,29603	0,703971	1,637141
16	220	180	45	44,21533	0,784674	1,74372
16	220	220	45	43,58108	1,418922	3,153159

Общая трехфакторная модель примет вид:

$$[y]_{\mu_{3T}} = 28,014 \exp(0,0188P_{\rm n}) + 0,00000223t_{\rm n}^{3,703} \exp(-0,0197t_{\rm n}) + 0,208 t_{\rm no} - 53,8.$$
(12)

Относительная погрешность модели представлена в табл. 6.

Заключение. Как видно из представленных сведений моделирования свойств древесно-композиционных материалов методом параметрической идентификации, температура прессования и давление прессова-

Литература

- 1. Мазуркин П.М. Идентификация статистических устойчивых закономерностей // Наука и мир. 2013. № 3 (3). С. 28–33.
- 2. Мазуркин П.М. Закономерности простых чисел. Германия: Palmarium Academic Publishing, 2012. 280 p.
- Мазуркин П.М. Биотехнический закон и примеры из техники и эконометрики // Успехи современного естествознания. 2009. № 9. С. 97–103.
- Боголицын К.Г. Современные тенденции в химии и химической технологии растительного сырья // Российский химический журн. 2004. № 6. С. 105–123.
- 5. Crank J. The mathematics of diffusion // Brunel university Uxbridge: second edition clarendon press Oxford, 1975. 421 p.
- 6. Скурыдин Ю.Г., Скурыдина Е.М. Влияние компонентов древесного композиционного материала на температуру

ния способствуют повышению плотности и прочности образцов. Увеличение данных показателей увеличивает плотность и прочность образцов. Итоговые погрешности по многофакторным моделям плотности ДКМ из непромытых образцов составляют: абсолютная погрешность модели — 31,7 кг/м³, относительная погрешность модели — 1,91 %; по прочности: абсолютная погрешность модели — 0,08 МПа, относительная погрешность — 0,15 %.

фазовых переходов // Физика и химия обработки материалов. 2016. № 4. С. 57–62.

- Conner A.H., Lorenz L.F. Kinetic modeling of hardwood prehydrolysis. Part III. Water and dilute acetic acid prehydrolysis of southern red oak // Wood and Fiber Science. 2007. V. 18. № 2. P. 248–263.
- Логинова И.В., Харина М.В. Исследование высокотемпературного автогидролиза лигноцеллюлозного сырья // Вестн. Казанского технологического ун-та. 2017. Т. 20. № 6. С. 143–145.
- Springer E.L., Harris J.F., Neill W.K. Rate studies of the hydrotropic delignification of aspenwood // Tappi. 1963. V. 46. № 9. 551 p.
- 10. Сафин Р.Р., Козлов Р.Р. Математическое моделирование процесса паровзрывной обработки измельченного древесного сырья // Интеллектуальный потенциал общества как драйвер инновационного развития науки: сб. ст. Все-

рос. науч.-практической конф. (13 сент. 2020 г.). Пермь, 2020. С. 31-36.

- Gravitis J. Chemicals and biofuels from hardwoods, fuel crops and agricultural wastes // Retrieved on. 2004. V. 30. P. 1–5.
- Просвирников Д.Б., Сафин Р.Р., Козлов Р.Р. Оценка влияния условий каталитической непрерывной паровзрывной активации древесины на физико-эксплуатационные свойства плитных древесных композиционных материалов на основе активированных волокон // Деревообрабатывающая промышленность. 2020. № 2. С. 35–50.
- Prosvirnikov D.B., Safin R.G., Zakirov S.R. Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment // Solid State Phenomena. Trans Tech Publications. 2018. V. 284. P. 773–778.
- Kokta B.V., Ahmed A. Steam explosion pulping // Environmentally friendly technologies for the pulp and paper industry. 1998. P. 191–213.
- 15. Казаков Д.С., Воринова М.А., Алгазин Д.Н. Глубокая переработка целлюлозосодержащих отходов // Биотехнологии в сельском хозяйстве, промышленности и медицине: регион. науч.-практическая конф. молодых ученых (25 апр. 2017 г.). Омск, 2017. С. 144–149.
- 16. Просвирников Д.Б. Совершенствование техники и технологии процесса высокотемпературной паровзрывной обработки древесных отходов: автореф. дис. ... канд. техн. наук, Казанский гос. технологический ун-т. Казань, 2013. 16 с.
- 17. Baba Y. Pretreatment of lignocellulosic biomass by cattle rumen fluid for methane production: bacterial flora and enzyme activity analysis // Journal of bioscience and bioengineering. 2017. V. 123. № 4. P. 489–496.
- Мазуркин П.М., Сафин Р.Г., Просвирников Д.Б. Статистическое моделирование процессов деревообработки. Казань: Изд-во КНИТУ, 2014. 336 с.
- Suchsland O., Woodson G.E., Mcmillin C.W. Effect of hardwood process variables on fiberbonding // Forest Products Journal. 1983. № 33 (4). P. 58–64.
- 20. Wright B. Steam Explosion Pilot Plant // Matherials of Department of wood science and forest products, 2008.

References

- Mazurkin P.M. Identification of statistical stable patterns // Nauka i mir Science & World. 2013. № 3 (3). P. 28–33.
- 2. Mazurkin P.M. The regularities of prime numbers. Germaniya: Palmarium Academic Publishing, 2012. 280 p.
- 3. Mazurkin P.M. Biotechnical law and examples from engineering and econometrics // Advances in current natural sciences. 2009. № 9. P. 97–103.
- Bogolicyn K.G. Current trends in the chemistry and chemical technology of plant raw materials // Rossijskij himicheskij zhurn. 2004. № 6. P. 105–123.
- Crank J. The mathematics of diffusion // Brunel university Uxbridge: second edition clarendon press Oxford, 1975. 421 p.
- 6. Skurydin YU.G., Skurydina E.M. Influence of wood composite material components on the temperature of phase transi-

tions // Physics and Chemistry of Materials Treatment. 2016. No 4. P. 57-62.

- Conner A.H., Lorenz L.F. Kinetic modeling of hardwood prehydrolysis. Part III. Water and dilute acetic acid prehydrolysis of southern red oak // Wood and Fiber Science. 2007. V. 18. № 2. P. 248-263.
- Loginova I.V., Harina M.V. Investigation of high-temperature autohydrolysis of lignocellulose raw materials // Herald of Kazan Technological University (KNRTU). 2017. V. 20. № 6. P. 143–145.
- Springer E.L., Harris J.F., Neill W.K. Rate studies of the hydrotropic delignification of aspenwood // Tappi. 1963. V. 46. № 9. 551 p.
- Safin R.R., Kozlov R.R. Mathematical modeling of steamblast processing of crushed wood raw materials // Intellektual'nyj potencial obshchestva kak drajver innovacionnogo razvitiya nauki: sb. st. Vseros. nauch.-prakticheskoj konf. (13 sent. 2020 g.). Perm', 2020. P. 31–36.
- Gravitis J. Chemicals and biofuels from hardwoods, fuel crops and agricultural wastes // Retrieved on. 2004. V. 30. P. 1–5.
- Prosvirnikov D.B., Safin R.R., Kozlov R.R. Evaluation of the influence of conditions of catalytic continuous steamexplosive activation of wood on the physical and operational properties of wood composite materials based on activated fibers // Derevoobrabativaushaya promishlennost' (Woodworking industry). 2020. № 2. P. 35–50.
- Prosvirnikov D.B., Safin R.G., Zakirov S.R. Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment // Solid State Phenomena. Trans Tech Publications. 2018. V. 284. P. 773–778.
- Kokta B.V., Ahmed A. Steam explosion pulping // Environmentally friendly technologies for the pulp and paper industry. 1998. P. 191–213.
- Kazakov D.S., Vorinova M.A., Algazin D.N. Deep processing of cellulose-containing waste // Biotekhnologii v sel'skom hozyajstve, promyshlennosti i medicine: region. nauch.prakticheskaya konf. molodyh uchenyh (25 apr. 2017 g.). Omsk, 2017. P. 144–149.
- 16. Prosvirnikov D.B. Improvement of the technique and technology of the process of high-temperature steam-explosive treatment of wood waste: avtoref. dis. ... kand. tekhn. nauk, Kazanskij gos. tekhnologicheskij un-t. Kazan', 2013. 16 p.
- 17. Baba Y. Pretreatment of lignocellulosic biomass by cattle rumen fluid for methane production: bacterial flora and enzyme activity analysis // Journal of bioscience and bioengineering. 2017. V. 123. № 4. P. 489–496.
- Mazurkin P.M., Safin R.G., Prosvirnikov D.B. Statistical modeling of woodworking processes. Kazan': Izd-vo KNITU, 2014. 336 p.
- Suchsland O., Woodson G.E., Mcmillin C.W. Effect of hardwood process variables on fiberbonding // Forest Products Journal. 1983. № 33 (4). P. 58–64.
- 20. Wright B. Steam Explosion Pilot Plant // Matherials of Department of wood science and forest products, 2008.