Systems. Methods. Technologies 4 (40) 2018

Системы Методы Технологии. А.С. Устинов и др. Разработка эффективных … 2018 № 4 (40) с. 69-75 75 18. Ustinov A., Pitukhin E., Pitukhin A. Research of Thermal Stability and Fire-Resistance Properties of the Composite Materi- al “Water Glass-Graphite Microparticles” // Key Engineering Materials. 2016. Vol. 744. P. 27-31 doi:10.4028/ www.scientific.net/KEM.744.27. 19. Устинов А.С., Питухин Е.А. Исследование композит- ного материала «жидкое стекло–микрочастицы графита» методом термогравиметрии // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17, № 5. С. 826–833. 20. ISO 834–12:2012Fire resistance tests. Elements of build- ing construction. Part 12: Specific requirements for separating elements evaluated on less than full scale furnaces. 21. Химическая энциклопедия. В 5 т. / гл. ред. И.Л. Кнунянц, Н.С. Зефиров. М.: Сов. энциклопедия, 1998. Т. 5. 340 с. References 1. Sosnovchik Yu.F. Regularity of the development of gras- sroots forest fires, the method of prevention and prevention of the spread of grassroots forest fire // Vavilovskie chteniya - 2017: sb. st. mezhdunar. nauch.-prakticheskoj konf., posvyashch. 130-j godovshchine so dnya rozhdeniya akad. N.I. Vavilova. M., 2017. P. 259-266. 2. Kustov O.M., Shadaeva L.I., Nosyakova E.A. Features of individual investigative actions in the investigation of forest fires and the establishment of the causes of forest fires // Scientific look into the future. 2016. T. 7, № 4. P. 75-79. 3. Zayac A.M., Logachyov A.A., Andreeva Z.N., Moiseev D.M. Operational identification of possible damage caused by forest fire // Informacionnye sistemy i tekhnologii: teoriya i prak- tika: sb. nauch. tr. 2015. P. 35-41. 4. Ostroshenko V.V., Govorushko S.N., Gromyko S.A., Soko- lova G.V., Suhomlinova V.V., Sheshukov M.A. Forest fires in Hunting and their impact on forest ecosystems. Wildfires as a biosphere phenomenon: monogr. Birobidzhan: Amur. gos. un-t, 2013. 211 p. 5. Konstantinov A.V., Morkovina V.V. Forest fires as the most significant threat to the economic security of the forest sec- tor // Aktual'nye napravleniya nauchnyh issledovanij XXI veka: teoriya i praktika. 2016. T. 4., № 2 (22). P. 319-325. 6. Orlovskij S.N., Berdnikova L.N. Optimization of technolo- gies and means of fire-fighting in the fight against forest fires // The Bulletin of KrasGAU. 2018. № 2 (137). P. 84-89. 7. Dovgalyuk Yu.A., Veremej N.E., Toropova M.L., Sin'ke- vich A.A., Kurov A.B., Volkov N.N., Ignat'ev A.A. Features of the evolution of convective clouds and precipitation in conditions of severe aerosol pollution of the atmosphere caused by forest fires// Tr. gl. geofiz. observatorii im. A.I. Voejkova. M., 2018. № 588. P. 7-27. 8. GOST 12.1.005-88. Occupational safety standards system. General sanitary requirements for working zone air (s Izmene- niem N 1). M.: Standartinform, 2008. 9. Volkova V.K. Thermophysical properties of composite ma- terials with polymer matrix and solid solutions. M.: Nauka, 2011. 101 p. 10. Gluhova O.E., Kolesnikova A.S., Slepchenkov M.M., Sa- vost'yanov G.V., Shmygin D.S. Promising composite material based on nanotubes and graphene for emission electronics // Na- notekhnologii: razrabotka, primenenie - XXI vek. 2015. T. 7, № 3. P. 35-41. 11. Maluk S., Terrasi C.P., Bisbya L., Stutz A. Erich Hugi Fire resistance tests on thin CFRP prestressed concrete slabs. Construction and Building Materials. 101. Part 1. 2015. P. 558-571. 12. Yue W.W., Tam W.C., Chow W.K. Assessment of radia- tive heat transfer characteristics of a combustion mixture in a three-dimensional enclosure using RAD-NETT (with application to a fire resistance test furnace). International Journal of Heat and Mass Transfer. 68. 2014. P. 383-390. 13. Schmid J., Klippel M., Just A., Frangi A. Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the Reduced. Cross- Section Method. Fire Safety Journal. 68. 2014. P. 81-99. 14. Das A., Kasaliwal G.R., Jurk R., Boldt R., Fischer D., Stöckelhuber K.W. Gert Heinrich Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study // Composites Science and Technology. 2012. Vol.72, Is.16, 16 November 2012. P. 1961-1967. 15. Barreto C., Proppe J., Fredriksen S., Hansen E., Rych- walski R.W. Graphite nanoplatelet/pyromellitic dianhydride melt modified PPC composites: Preparation and characterization // Polymer. 2013. Vol. 54, Is. 14, 21 June 2013. P. 3574-3585. 16. Binghao Wang, Yicheng Jiao, Aijuan Gu, Guozheng Liang, Li Yuan. Dielectric properties and mechanism of compo- sites by superposing expanded graphite/cyanate ester layer with carbon nanotube/cyanate ester layer // Composites Science and Technology, 2014. Vol. 91, 31 January 2014. P. 8-15. 17. Gostev V.A., Pitukhin E.A., Ustinov A.S., Shelestov A.S. Thermal Insulation Properties Research of the Composite Materi- al “Water Glass - Graphite Microparticles” // IOP Conference series: Materials science and engineering. 2016 1757-899X 123 012018 doi:10.1088/1757-899X/123/1/012018. 18. Ustinov A., Pitukhin E., Pitukhin A. Research of Thermal Stability and Fire-Resistance Properties of the Composite Materi- al “Water Glass-Graphite Microparticles” // Key Engineering Materials. 2016. Vol. 744. P. 27-31 doi:10.4028/ www. scientif- ic.net/ KEM. 744. 27. 19. Ustinov A.S., Pituhin E.A. Research of “water glass - graphite microparticles” composite material on the method of thermogravime- try // Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2017. T. 17, № 5. P. 826-833. 20. ISO 834–12:2012. Fire resistance tests. Elements of build- ing construction. Part 12: Specific requirements for separating elements evaluated on less than full scale furnaces. 21. Chemical encyclopedia. v 5 t. / gl. red. I.L. Knunyanc, N.S. Zefirov. M.: Sov. ehnciklopediya, 1998. T. 5. 340 p.

RkJQdWJsaXNoZXIy MTk0ODM1