УДК 338 ББК 65 DOI: 10.18324/2224-1833-2025-3-62-71

## Методический подход к оценке влияния количественно-качественного анализа на формирование инновационного типа стратегии развития экономики в условиях значительной неопределённости

А.Ф. Шуплецов $^{a}$ , Ю.А. Скоробогатова $^{b}$ 

Байкальский государственный университет, ул. Ленина, 11, Иркутск, Россия <sup>a</sup> ShupletsovAF@bgu.ru, <sup>b</sup> SkorobogatovaYA@bgu.ru <sup>a</sup> https://orcid.org/0000-0002-9595-9163, <sup>b</sup> https://orcid.org/0009-0007-3672-5635 Статья поступила 09.09.2025, принята 20.09.2025

В статье представлен краткий экскурс в историю методики и методологии количественно качественного анализа с использованием нечётких множеств, их применения в формировании стратегии развития бизнеса. Поэтапный переход хозяйственных систем к современному типу развития с учётом национальных интересов остается перспективным и результативным направлением её разработки, позволяя претворять в жизнь концепции инновационной динамики российской экономики. Тем не менее, придётся возвращаться к освоенным ранее механизмам и формам взаимодействия, искать их новые связи и определять их место в новом состоянии. Будет развиваться кибернетическая цифровая система, части будут взаимодействовать и реагировать на соответствующие сигналы при наличии централизованных установок. Важно уяснить, что в реализации этих идей и процессов может помочь «искусственный интеллект». Следует разобраться с тем, что сегодня понимается под термином «ИИ». Если это ещё не совсем интеллект, то рано или поздно он может возникнуть. На этот счёт идут дискуссии, «что такое искусственный интеллект» и интеллект ли это человеческий? Уже сейчас он может самостоятельно вырабатывать алгоритмы, но пока не способен их создавать, ориентируясь на особенности деятельности человека. И это некая граница. В статье показаны возможности и сделан вывод о том, что в смешанной экономике, имеющей многообразие форм собственности, использующей процедуры оптимизации в решении проблем соотношения государственного регулирования и рыночной самоорганизации, многоаспектный подход к анализу «целостного экономического развития как системы» позволит избежать односторонних оценок, наметить новые эффективные пути реализации реформ, предложить комплекс мер по преодолению кризисных явлений. Этому, в частности, способствует разумная оценка влияния количественно-качественного анализа на инновационный тип развития экономики в условиях значительной неопределенности внешней и внутренней среды.

**Ключевые слова:** количественно-качественной анализ; инновационный тип развития экономики; неопределённость; неопределённая ситуация в экономике; искусственный интеллект; теория нечётких множеств и стратегия бизнеса.

## A methodological approach to assessing the impact of quantitative and qualitative analysis on the formation of an innovative type of economic development strategy in conditions of significant uncertainty

A.F. Shupletsov<sup>a</sup>, Yu.A. Skorobogatova<sup>b</sup>

Baikal State University; 11, Lenin St., Irkutsk, Russia 
<sup>a</sup> ShupletsovAF@bgu.ru, <sup>b</sup> SkorobogatovaYA@bgu.ru
<sup>a</sup> https://orcid.org/0000-0002-9595-9163, <sup>b</sup> https://orcid.org/0009-0007-3672-5635
Received 09.09.2025, accepted 20.09.2025

The article provides a brief overview of the history of the techniques and methodology of quantitative and qualitative analysis using fuzzy sets, their application in the formation of a business development strategy. The gradual transition of economic systems to a modern type of development, taking into account national interests, remains a promising and effective direction of its development, allowing the implementation of the concepts of innovative dynamics of the Russian economy. Nevertheless, it is necessary to return to the previously mastered mechanisms and forms of interaction, look for their new connections and determine their place in the new state. A cybernetic digital system will be developed, the parts will interact and respond to appropriate signals in the presence of centralized installations. It is important to understand that «artificial intelligence» can help in the implementation of these ideas and processes. It's essential to understand what is meant by the term "AI" today. If it's not quite the intelligence yet, it may emerge sooner or later. There are discussions about "what artificial intelligence actually is" and if it is human intelligence? Even now, AI can independently develop algorithms, but so far it is not able to create them, focusing on the specifics of human activity. And this is a kind of boundary. The article shows the possibilities and concludes that in a mixed economy with a variety of forms of ownership, using optimization procedures to solve the problems of government regulation and market self-organization, a multidimensional approach to the analysis of "holistic economic development as a system" will avoid one-sided assessments, identify new effective ways to implement reforms, propose a set of measures to overcome crisis phenomena. In particular, this is facilitated by a reasonable assessment of the impact of quantitative and qualitative analysis on the innovative type of economic development in conditions of significant uncertainty in the external and internal environment.

**Keywords:** quantitative and qualitative analysis; innovative type of economic development; uncertainty; uncertain economic situation; artificial intelligence; theory of fuzzy sets and business strategy.

Введение. Трудности в экономике страны вызваны не только объективными причинами, но и ошибками в её реформировании. Нежелание понять и учесть глобальные тенденции становления новой стадии развития человеческой цивилизации, необходимость перераспределения сил и средств в системе факторов прогресса в экономических процессах привели к негативным стратегическим последствиям.

Поэтапный переход хозяйственных систем к типу развития с учётом национальных интересов остаётся перспективным и результативным направлением разработки, претворения в жизнь концепции инновационной динамики российской экономики. (Примеч.: Концепция как системный способ понимания трактовки явлений, совокупность конструктивных принципов их изучения, требует полного понимания объекта исследования. Концепции инновационного типа развития национального хозяйства начинаются с анализа экономики как категории в политико-экономическом, организационно-структурном, воспроизводственном, технологическом и ресурсном аспектах).

Национальная экономика – целостная совокупность взаимодействующих и переплетающихся научно-воспроизводственных процессов. Важно понимать, что рынок – это не вся экономика. Это особый механизм регулирования отношений между производителями и потребителями, продавцами и покупателями [1].

Экономику и макроэкономику, как считает С.Ю. Глазьев, можно представить, как сложную системную совокупность технологических совокупностей цепей и укладов, не совпадающую со структурой отраслей, корпораций, компаний и предприятий [2, с. 55–70].

А. Некипелов [3, с. 105] отмечает — прогресс в области цифровой экономики, мощь «искусственного интеллекта (ИИ)» неизмеримо возрастают. Но с другой стороны, не верится, что «искусственный интеллект» из единого центра сможет охватить в полном смысле слова всё многообразие взаимосвязей, возникающих в экономике. Вполне возможно, придётся возвращаться к каким-то освоенным ранее механизмам и формам взаимодействия, искать их новые связи и их место в новом состоянии. Будет развиваться кибернетическая цифровая система, части будут взаимодействовать, реагировать на соответствующие сигналы, но при наличии централизованных установок.

Может ли в реализации этих идей и процессов помочь «искусственный интеллект»? Возможно. Надо разобраться, что имеется (понимается) под термином «ИИ». Если сегодня это ещё не совсем интеллект, то рано или поздно он может возникнуть. Среди специалистов на этот счёт идёт дискуссия, что такое «искусственный интеллект» и интеллект ли это человеческий. Уже сейчас он может самостоятельно вырабатывать алгоритмы, но пока не способен создавать алгоритмы, связанные с особенностями человека. Это некая граница, которую перейти нельзя.

Джон Кеннет Гэлбрейт отмечал, что технологии являются центральной характеристикой экономического развития. Нам необходимы те, которые позволяют людям процветать, делают их счастливее и ведут к росту реального благополучия. Цифровизация, способы создания изделий, робототехника, «большие данные», «искусственный интеллект» — эта повестка будет развиваться. Отомрут ли некоторые профессии, заместят

ли человека? Нет. Такие процессы всегда происходили. В обществе произойдёт адаптация.

Есть точка зрения, как отметил А. Галушка, «искусственный интеллект» — это как раз движение на совершенно новый информационный уровень управления обществом и экономикой. «Искусственный интеллект» — это аналитические способы обработки данных и формирования вариантов решений. Только человек обладает способностью созидать, творить, изобретать, преобразовывать мир и пространство.

Очевидно, что при различных механизмах принятия решений и согласования интересов членов группы результат будет разный. В отличие от понятия «индивидуальный интерес» мы затрудняемся, порой не можем формализовать «общественный интерес» и он на разных этапах понимается по-разному.

Люди чувствуют, что выгоды, которые они получают от сотрудничества, взаимодействия друг с другом существенно превышают издержки, связанные с неопределённостью общественного состояния. При этом многие их группы оказываются достаточно устойчивыми, в условиях отсутствия гарантий этого состояния. Другие как бы вдруг распадаются.

Предстоит на постоянной основе изучать различные варианты развития событий, в дальнейшем это поможет выбрать более менее приемлемый, если не самый лучший вариант.

Можно сделать вывод о том, что в смешанной экономике многоаспектный подход к анализу «целостного экономического развития, как системы» позволяет избежать односторонних оценок, наметить эффективные пути, предложить комплекс мер по преодолению кризисных явлений. Будем придерживаться взглядов, в соответствии с которыми для смешанной экономики характерно не только многообразие форм собственности, но и необходима процедура оптимизации соотношения государственного регулирования и рыночной самоорганизации, а также многоаспектный подход к анализу целостного экономического развития.

Разброс мнений на этот счёт широк – от оптимистичных рассуждений «о качественно новом облике в экономике» до выводов о «распаде производственного и научно-технологического потенциалов» страны. Разнообразие оценок основано на отсутствии адекватной моменту методологии анализа экономической динамики хозяйственных систем при переходе на инновационный тип развития, игнорировании многоаспектности национального народного хозяйства страны в условиях значительной его неопределённости [4, с. 72].

Пренебрежение в своё время в России закономерностями экономической теории, в частности, «когда производственная стадия в воспроизводственных процессах является приоритетной среди других», привело к закреплению «значимости» распределительных отношений. Хотя важным был всего лишь вывод «об особенностях развития хозяйственных систем».

Характеристика системы хозяйствования должна формироваться через учёт достижений на всех стадиях воспроизводства. Состояние устойчивости как интегрированного свойства механизма хозяйствования характеризует её тип в условиях значительной неопределённости при переходе на инновационный тип развития. Ведущими элементами устойчивости становятся — инновационная и инвестиционная активность, конкурентоспособность, обладающие постоянно воспроизво-

димыми факторами саморазвития, обеспечивая степень самостоятельности. Стабильность и развитие экономики зависят от её переориентации в направлении преимущественного роста наукоёмких производств [5]. В настоящее время, как и прежде, всё очевиднее становится необходимость доступа к источникам инвестиций бизнеса, одновременно приходится акцентировать внимание на целевое использование амортизационных отчислений.

Особым же ресурсом становится «предпринимательский потенциал». Но не следует преувеличивать возможности последнего в обновлении экономики. Этот вывод следует из того, что налицо ограниченность предпринимательского ресурса, ситуация усугубляется экономической неустойчивостью на этапе становления инновационных предпринимательских фирм.

Можно утверждать, что инновационный тип развития экономики – это «особая инновационная направленность целей, путей их достижения, особая инновационная настройка механизма государственного воздействия на экономику». (Примеч.: «Особая», в смысле преимущественно ориентированная во всех сферах экономики на системное использование инноваций и оценку их воздействия). В этих условиях усиливается значимость и ожидаемый от их взаимодействия экономический эффект [6, 7, 8, 9].

При этом можно ожидать синергетический эффект от этих процессов, как комплексный результат, характеризующийся тем, что итоги реформ превысят их сумму, полученную при оценке влияния на данный процесс каждого из выявленных факторов в отдельности.

**Методология исследования.** Многокритериальный выбор решений в экономике важный инструмент обоснования решений. Об этом свидетельствует достаточной большой перечень работ в этой области прикладных исследований [10, 11, 12, 13, 14].

Рассматриваются следующие методологические подходы, учитывающие системность, иерархию, интеграцию, формализацию и комплекс методов управления в социально-экономической среде. Синергетический подход основывается на нелинейной парадигме самоорганизации и самоуправления, предполагая использование методов моделирования динамичного поведения объектов. Средством описания поведения объекта становится метод информационного моделирования связей. На первом этапе моделирования связи представляются векторами. На втором связи могут быть представлены формальным математическим аппаратом описания динамических систем.

Производство, финансы, менеджмент, маркетинг, научно-методическая деятельность, организация новых систем отношений и другие компоненты могут рассматриваться как внешние системы, так и внутренние подсистемы, обусловленные сложными многофакторными связями. На этом фоне теория нечётких множеств, «искусственный интеллект» созданные на их основе процедуры принятия решений, используемые для обоснования «действий» в ситуациях с разной степенью неопределенности, приобретают всё большую актуальность. (Примеч.: Общепринятые термины и определения, на которые будем опираться: ситуация. макроситуация, микроситуация). Что мы и наблюдаем в настоящее время, на новом витке развития общественных отношений.

**Общие понятия,** результаты по адаптации обозначенной теории и применение её в практике исслелований.

«Неопределённая ситуация» в экономике имеет место, когда неизвестны все или некоторые её оценки и причины их возникновения. «Размытая ситуация» характеризуется условиями, когда причины известны, но не устранены. «Нечёткая ситуация» характеризуется условиями, когда причины возникновения, стратегия их устранения известны, но хотя бы по одному из критериев нельзя получить количественную оценку. Информация по этим показателям имеет «качественное» описание.

Л. Заде ввёл в оборот понятие размытого («нечёткого») множества, ставшего одной из перспективных концепций при создании процедур принятия решений в условиях неопределённости с применением таблиц принятия решений (ТПР) и «нечётких алгоритмов» [15 с. 5–48]. Е.Я. Карповский, М.И. Кулагина под таблицами принятия решений предложили понимать средство компактного представления логических правил, используемых для выбора действий, которые следует выполнять в соответствии с условиями и порядком решения рассматриваемой ситуации.

Теория нечётких множеств — область математики, использующая аппарат, оперирующий четырьмя понятиями: «лингвистическая переменная», «нечёткое множество», «нечёткие отношения», «нечёткие алгоритмы».

В этих условиях ТПР являются средством, позволяющим в экономике алгоритмически задать действия и мероприятия, необходимые для оперативного устранения негативной ситуации при различных сочетаниях причин. Они описывают четыре действия типа:

$$\{\Phi$$
акторы $\} \rightarrow \{$ Условия $\} \rightarrow \{$ Действия $\} \rightarrow \{$ Обоснования, рекомендации $\}$ .

Специалисты организации при отсутствии точных числовых оценок могут предложить и промежуточные значения. Возникает нечёткость формулирования условий реализации ситуации, и для её описания требуется применение нечётких переменных. А в традиционных таблицах действий используется классическая теория исчисления высказываний в виде условного выражения типа «если А, тогда В». С этой целью выделяют три вида нечёткости: «нечёткие переменные», «нечёткие отношения», «нечёткие инструкции».

В формализованном виде процедуры применения ТПР в нечётких производственных ситуациях можно выразить как: «нечёткое описание факторов»  $\rightarrow$  «пре-

образование в число»  $\rightarrow$  «вход в традиционную ТПР»; «нечёткое описание факторов»  $\rightarrow$  «нечёткое описание условий»  $\rightarrow$  «преобразование в число»  $\rightarrow$  «вход во вторую половину традиционной ТПР»; «нечёткое описание факторов»  $\rightarrow$  «нечёткое описание условий»  $\rightarrow$  «нечёткие правила, инструкции»  $\rightarrow$  «нечёткие ТПР».

**Решение.** Это направление моделирования в экономике получило признание, активно развивается, появляются всё новые публикации, посвящённые различным аспектам и практическим приложениям по использованию теории нечётких множеств. В частности, это реше-

ние задач определения размытого множества Парето и модели взвешенной свертки нечётких локальных критериев при векторной оптимизации [16, с. 129–133, 17, 18].

Теоретическое направление деятельности состоит в «размывании» существующих математических понятий. В частности, заменяется жёсткое отношение принадлежности элемента множеству на функцию принадлежности. При этом возникают новые нечёткие аналоги известных математических теорий [19, р. 28–44, 20, р. 94–102].

Другое направление ориентируется на разработку методов количественного описания нечётких ситуаций путём перехода от нечисловой информации к числовой и последующего использования известного аппарата теории выбора и принятия решений.

Описание модели в общем виде можно представить следующим образом. О степени принадлежности конкретного элемента к некоторому нечёткому множеству судят по значению его функции принадлежности, изменяющейся в интервале (0, 1). Степень принадлежности в лингвистической форме выражается модификаторами  $b_n$ , присовокупляемым к значению лингвистической переменной. Например, для лингвистической переменной «соответствует», модификаторами являются слова «достаточно», «недостаточно», «не», «полностью» и др.

Для описания нечёткого множества с помощью функции принадлежности недостаточно указать совокупность модификаторов, надо определить величину  $v_i$  качественного уровня словами «высокий»  $(v_i)$ , «средний»  $(v_2)$ , «низкий»  $(v_3)$ , называемыми «терм множествами», от которых зависит её вид.

Для управления сложными экономическими, производственными процессами в условиях неопределённости такой подход является достаточно эффективным, поскольку задача устранения отклонения по конечному результату одновременно достигается на всех уровнях решения поставленной задачи.

Алгоритм принятия решения при ситуационном способе управления состоит из четырёх этапов.

- 1. Оценка ситуации по числовой и нечисловой информации с целью выявления уровня её критичности (по оценочным показателям, ресурсам) для принятия альтернативных решений.
- 2. Формирование множества критериев по результатам анализа макро- и микроситуаций с помощью дерева причин. Выявление и описание ограничений по причинно-следственным связям и уровню допускаемых отклонений по каждой микроситуации. Описание альтернатив по финансовым материальным, временным, организационно-трудовым, производственно-бытовым условиям и др. ресурсам, которые в каждом случае зависят от условий деятельности и определяют стратегию выбора решения.
- 3. Формирование решающих правил для выбора окончательного решения с использованием методов многокритериального выбора и нечётких алгоритмов, приемлемых для конкретной задачи.
- 4. Выдача рекомендаций по оперативному устранению негативных последствий анализируемой ситуации в виде типовых, уникальных (нетиповых) решений и регулирующих воздействий, получаемых расчётным способом по объективным или субъективным моделям.

Для реализации этого подхода используются инструкции, стандарты, предписывающие поведение, вырабатываются решающие правила по каждой задаче

в целом или для отдельных её операций. При рассмотрении управленческих задач осуществляются две процедуры выбора решения: целостный выбор (решение принимается в целом по ситуации без оценки критериев и ресурсов); критериально-экспертный выбор (решение принимается в результате деятельности группы экспертов анализирующих влияние факторов на конечный результат).

Например, задачи целостного выбора могут решаться по схеме «оценка альтернативы → выдача рекомендаций» в тех случаях, когда административноуправленческий персонал, не имея информации для оценки ресурсов и критериев, вынужден принимать решение, полагаясь на собственный опыт, интуицию или теоретические знания. Считается правильным осуществлять решение задач и по схеме «оценка альтернативы → формирование множества альтернативы → выдача рекомендаций» в случаях, когда, не имея количественных оценок, ситуация считается «безвыходной». Если же не принять решения, конечные результаты будут плохие, ресурсы отсутствуют, дальнейшее развитие ситуации заведомо ухудшает конечный результат.

Принимая решение по управлению сложными бизнес-процессами в условиях неопределённости применение теории оптимальных стратегий [19] для эффективного управления не представляется возможным. Поскольку при наличии нечёткого описания ситуации невозможно найти корректную модель состояния процесса, использовать функцию выигрыша и принцип максимума Понтрягина. Более точно оценивать последствия рисков проекта можно с помощью нечётких моделей оценки рисков на основе теории нечётких множеств [21].

В относительно несложных производственных ситуациях можно активно использовать метод принятия решений, основанный на использовании графических номограмм, пример такой модели изображён на рис. 1.

На примере «невыполнения производственного задания» рассмотрим алгоритм действий по выбору решения, ориентируясь на функцию принадлежности и предпочтительности альтернатив.

- 1. Если недовыполнение задания  $\Delta_n$  не превышает перевыполнения  $P_{\delta}$  сложившегося за отработанный период, не вмешиваемся в ход производственного процесса.
- 2. Если недовыполнение производственного задания равно объёму перевыполнения за отработанный период, усиливаем контроль за очередным этапом с целью пресечения негативных последствий, выявляем причины.
- 3. Если недовыполнение задания больше объема перевыполнения за сложившийся период ( $\Delta_n > P_{\delta}$ ), выявляются участники, которые не выполняют норматив, причины, вводятся в действие рекомендации по исправлению причин.
- 4. Выявлены сверхнормативные потери, оперативно устраняем путём минимизации потерь.
- В случае повышенных расходов ресурсов минимизируем их.
- 6. Значительное отклонение от плана, оперативно выявляем причины и устраняем их.

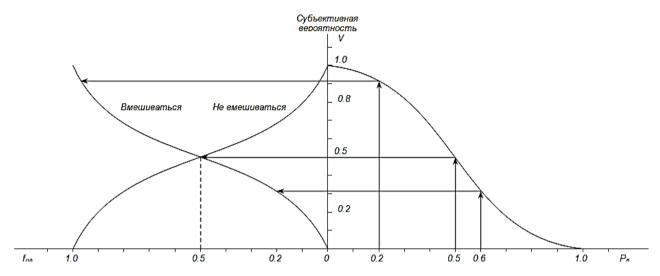



Рис. 1. Номограмма для оценки альтернатив и выбора решений

Практика применения подробного подхода описана в работе [22]. Решение аналогичных задач представляется возможным реализовать с использованием моделей, выстроенных на идеях теории нечётких множеств.

Использование элементов теории нечётких множеств в этих условиях даёт возможность принимать решения на основе нечёткой реляционной модели — «выбора оптимальной альтернативы из ранжированного по критерию порядка».

Интегральный показатель даёт представление о ресурсном потенциале с позиции его достаточности/недостаточности, позволяет управлять эффективным развитием бизнеса, используя оценки в виде суждений типа — потенциал бизнеса «неудовлетворительный» (интервал шкалы от 0 до 4), или «средний» (интервал шкалы от 4, до 7), «хороший» (интервал 8, 10) и он представляется адекватным сформулированной ситуации (рис. 2).

Алгоритм формирования нечёткого логического вывода реализуется в рамках экспертной системы с использованием программных средств пакета FUZZY LOGIC TOOLBOX.

Для задания функций используются типовые формы «кривых» (треугольная, трапециидальная, гауссова). Применив процесс «дефазификации», экспертная система выдаёт оценку в интервале чётким числом, равным, например, 5.5 (рис. 3).

Анализируя результаты, выявляется зависимость величины ресурсного потенциала от значений определяющих его компонентов, указать на его наибольшую зависимость от отдельных факторов. Даже незначительное приращение этих ресурсов приводит, по результатам оценки экспертной системы, к значительному изменению величины общего потенциала бизнеса.

Методический подход с использованием теории нечётких множеств по оценке результатов количественно-качественного анализа влияния на примере объекта сельскохозяйственного производства.

Описание ситуации: государство оказывает субъектам сельского хозяйства финансовую помощь, например, через различные программы. Здесь важно объективно обосновать необходимость предоставления такой помощи.

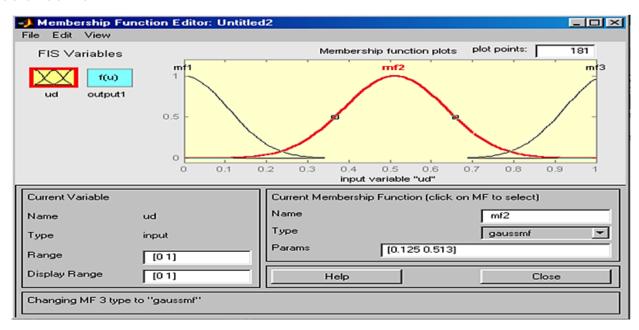



Рис. 2. Функции принадлежности нечётких множеств: «Малый» = m1, «Средний» = m2, «Высокий» = m3

Степень достоверности

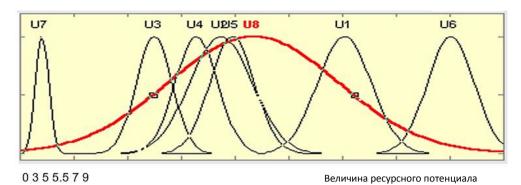



Рис. 3. Пример оценки ресурсного потенциала

Постановка задачи и её описание. По причине наличия множества не до конца известных количественных и качественных факторов, влияющих на развитие и текущее состояние экономики сельского хозяйства, отдельных его субъектов, нечётких данных, результаты производства сельхоз продукции не могут быть спрогнозированы с достаточной точностью. В данном контексте важную роль играют процессы, связанные с формализацией и обработкой информации с целью принятия в сельскохозяйственной среде стратегически разумных решений. В этом случае актуальной становится оценка возможности применения теории нечётких множеств в области стратегического планирования и управления отраслью.

Прикладные вопросы «принятия решений в условиях неопределённости и применения теории нечётких множеств в различных областях экономики» достаточно широко отражены в научных трудах. В частности, работы: О.В. Крюкова, О.В. Кондратьевой, А.А. Зубарева, С.В. Фролова, С.К. Волкова, А.Б. Симонова, Д.В. Полякова, А.И. Попова, С.А. Егорова, Д.Н. Клименко, А.Н. Ляшенко и др. авторов.

Описание модели. В случае, когда известны величина и модификаторы лингвистической переменной, имеется возможность рассчитать степень принадлежности элемента нечёткого множества с последующим преобразованием его в числовую оценку. Количественное описание нечётких ситуаций имеет большую пользу при принятии решений в сельскохозяйственном производстве, в частности.

Применение таблиц для устранения нечётких ситуаций осуществляется с использованием описания в виде дерева причин, лингвистических переменных, операций выдачи команд управления, в которых определяются действия в виде нечётких алгоритмов. На выходе появляется некая общая стратегия решения задачи в конкретной экономической обстановке, существующей в сельскохозяйственном производстве предпринимательской единицы (компании).

Пример реализации методического подхода по определению оценки ресурсного потенциала сельско-хозяйственного производства с использованием тео-

<sup>1</sup> В рамках научных исследований проводимых в Байкальском государственном университете рассматривался проект по обозначенной тематике. В проекте активное участие принимали А.Ф. Шуплецов, Ю.А. Скоробогатова, А.В. Чак. Часть материалов использована в данной статье.

рии нечётких множеств и методов оптимального планирования.

1. Каждый элемент потенциала представляется в виде лингвистической переменной: B, T, X, G, M [23].

Формула  $MF(x) = exp[-(\frac{x-c}{\sigma})^2]$  функция принадлежности гауссова типа с двумя параметрами, где c – это центр нечёткого множества, параметр  $\sigma$  – крутизна функции.

Элементы потенциала в виде лингвистической переменной: В, Т, X, G, М, означают: В – наименование лингвистической переменной (один из элементов ресурсного потенциала); Т – множество значений лингвистической переменной (терм-множество), представляющих собой наименования нечётких переменных, областью определения каждой их которых является множество X (универсальное множество); G – синтаксическая процедура, позволяющая оперировать элементами терм-множества (Т), в частности, создавать новые термы. Применив эту процедуру с использованием квантификаторов «и», «или», получим новые термы, где G(T) – расширенное терм-множество лингвистической переменной.

- 2. Определяется степень принадлежности значения каждого элемента ресурсного потенциала, выраженного числом или нечётким подмножеством, на универсальном множестве X посредством синтактической процедуры G. Если значение параметра лежит на пересечении функций принадлежности, тогда оно определяется по правилу минимизации:  $\mu A \cap B(x) = min(\mu A(x), \mu B(x))$ . Пересечение нечётких множеств, как их объединение, определяется по правилу максимизации:  $\mu A \cup B(x) = max(\mu A(x), \mu B(x))$ .
- 3. Выбирается компьютерная экспертная система для выработки заключения о состоянии и величине ресурсного потенциала сельскохозяйственного сектора экономики. Определяются правила нечёткого логического вывода, формируются функции принадлежности для соответствующих лингвистических термов.

Правила нечёткого логического вывода могут быть представлены согласно их видам, с учётом логических операций, разновидностей метода дефазификации. Обычно используются модели нечёткого вывода Мамдани, Сугено, Ларсена и др.

В частности, нечёткий логический вывод может быть получен посредством следующих операций [24] (рис. 4):

- 1) вводится нечёткость. Для этого функции принадлежности входных переменных применяются к их фактическим значениям для последующего определения степени истинности «предпосылки» каждого правила;
- 2) применяется нечёткая импликация, если «предпосылки» зависят от нескольких нечётких переменных. К значениям функций принадлежности применяется операция «конъюнкции» (в случае применения связки «и») или «дизъюнкции» (в случае применения связки «или»). Получаем степень «истинности» предпосылки каждого правила;
- 3) вычисляют значения степени «истинности» для предпосылок каждого правила, что позволяет построить модифицированные функции принадлежности переменной вывода или его следствий для каждого правила;
- 4) композиция. Для этого модифицированные нечёткие подмножества выходной переменной, полученной на предыдущем этапе, объединяются и формируется суммарное нечёткое подмножество;
- 5) приведение к «чёткости» (дефазификации), используется в случае, если необходимо преобразовать нечёткий набор выводов в числовое значение.

Представленная методика действий для получения логического вывода в части примера — сельскохозяйственное производство, даёт возможность провести анализ входных переменных, показателей оценки элементов ресурсного потенциала отрасли и в целом получить систематизированную оценку их величины.

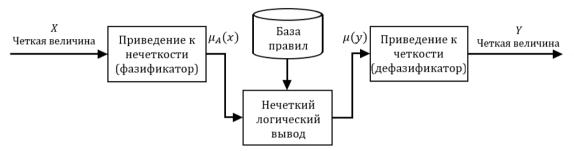



Рис. 4. Алгоритм действий для получения «нечёткого логического вывода»

Важным этапом оценки потенциала сектора сельского хозяйства становится выделение факторов (элементов) вместе с их составляющими (показателями). (Примеч.: в контексте настоящего исследования под фактором подразумевается некая движущая сила (причина), влияющая на деятельность хозяйствующего субъекта). Далее, на основе факторов, описываемых в экономической теории (например, факторы производства: природные ресурсы, трудовые ресурсы, инвестиционные ресурсы, предпринимательская способность, информация, инновации и т. д.), а также выделяемых исследователями в избранной области (например, правовой), для целей настоящего исследования приняты следующие факторы (элементы) потенциала. Это юридический, организационно-управленческий, трудовой (социальный), природно-климатический, производственно-технологический, финансовый, биологический.

Юридический фактор имеет особое значение и обуславливает функционирование сельскохозяйственного производства с точки зрения правовых отношений. Организационно-управленческие факторы обуславливают организационную структуру, стиль управления бизнесом в сельскохозяйственном производстве. Особенно важен трудовой фактор, поскольку представляет собой совокупность физических и умственных способностей работников, непосредственно распоряжающихся доступными ресурсами в отрасли.

К природно-климатическим факторам относятся: температура окружающей среды, частота выпадения и количество осадков, продолжительность безморозного и морозного периодов, наличие полезных ископаемых, отличие от других факторов, ландшафт местности. Они меньше всего подвластны действиям людей. Производственно-технологический фактор — совокупность орудий, способов производства, объектов инфра-

структуры, обеспечивающих деятельность в сельском хозяйстве. Финансовый фактор обеспечивает формирование, распределение, использование денежных средств в компании, осуществляющей сельскохозяйственное производство.

Биологический фактор важен в выбранной области сельского хозяйства, поскольку способен оказывать вредное воздействие на среду, приводить к возникновению ряда болезней.

Для целей настоящего исследования оценка ресурсного потенциала сельскохозяйственного производства производится комплексно, без иерархического разделения, поскольку каждый из представленных факторов (элементов) в избранной сфере имеет существенное значение. Факторы и их составляющие, влияющие на оценку ресурсного потенциала сельскохозяйственного производства, сведены в таблицу (табл. 1).

Детализация каждого из представленных факторов ресурсного потенциала сельскохозяйственного производства при наличии соответствующих исходных (нечётких) данных может быть расширена. Выделив значимые для экономического развития сферы сельскохозяйственного производства факторы (элементы), ресурсный потенциал (PII) можно представить в виде функции:  $PII=f(U_1,\ U_2,\ U_3,\ U_4,\ U_5,\ U_6,\ U_7)$ , где  $U_1$  — юридический;  $U_2$  — организационно-управленческий;  $U_3$  — трудовой (социальный);  $U_4$  — природно-климатический;  $U_5$  — производственно-технологический;  $U_6$  — финансовый;  $U_7$  — биологический. Область определения функции — нечёткие подмножества, заданные на универсальном множестве. Нами принято: «низкий»  $(1,\ 4)$ ; «средний»  $(4,\ 7)$ ; «высокий»  $(7,\ 10)$ .

Для каждого x значение ординаты  $\mu(x)$  определяет степень принадлежности показателя к соответствующему нечёткому подмножеству.

**Таблица 1.** Факторы и их составляющие ресурсного потенциала сельскохозяйственного производства (на примере отрасли животноводство)

| Фактор                              | Составляющие                                                                        |
|-------------------------------------|-------------------------------------------------------------------------------------|
| Юридический                         | - количество нормативно правовых факторов, действующих в сфере сельского хозяйства; |
|                                     | - государственные (муниципальные) программы развития в сфере сельского хозяйства;   |
|                                     | - запреты и ограничения (иные специальные экономические меры), действующие в сфере  |
|                                     | сельского хозяйства;                                                                |
|                                     | - организационно-правовая форма хозяйствующего субъекта;                            |
|                                     | - вид (виды) экономической деятельности хозяйствующего субъекта.                    |
| Организационно-<br>управленческий   | - режим работы;                                                                     |
|                                     | - система оплаты труда;                                                             |
|                                     | - структура управления;                                                             |
|                                     | - организация взаимодействия подразделений;                                         |
|                                     | - деятельность по продвижению продукции.                                            |
| Трудовой<br>(социальный)            | - трудовая дисциплина;                                                              |
|                                     | - работники, имеющие опыт;                                                          |
|                                     | - работники, не имеющие опыта работы в отрасли;                                     |
|                                     | - работники, обладающие специальными навыками;                                      |
|                                     | - социальный пакет;                                                                 |
|                                     | - мероприятия по повышению квалификации работников.                                 |
| Природно-<br>климатический          | - размеры производственных площадей, земель;                                        |
|                                     | - территории водоемов;                                                              |
|                                     | - территории с благоприятным климатом;                                              |
|                                     | - лесные зоны;                                                                      |
|                                     | - степи.                                                                            |
| Производственно-<br>технологический | - автоматизация производства;                                                       |
|                                     | - спецтехника;                                                                      |
|                                     | - логистическая инфраструктура;                                                     |
|                                     | - энергообеспечение;                                                                |
|                                     | - производительность используемого оборудования;                                    |
|                                     | - мощности нового оборудования;                                                     |
|                                     | - устаревшее оборудование.                                                          |
| Финансовый                          | - объем заработанных денежных средств (от реализации деятельности);                 |
|                                     | - объем привлеченных денежных средств (инвестиции, субсидии);                       |
|                                     | - объем потенциально привлекаемых денежных средств.                                 |
| Биологический                       | - разведение пород животных, устойчивых к заболеваниям;                             |
|                                     | - разведение пород животных, устойчивых к суровым климатическим условиям;           |
|                                     | - количество здоровых животных;                                                     |
|                                     | - наличие ветеринарного подразделения;                                              |
|                                     | - кормление животных натуральными (без содержания вредных компонентов) кормами.     |

Использование теории нечётких множеств для анализа экспертных оценок предполагает разработку специальных таблиц, заполняемых экспертами соответствующих областей знаний, имеющие практический опыт и другие навыки. Полученные данные используются для определения итоговой оценки позволяющую вывести общую оценку каждого фактора.

Отметим, что эффективным в теории нечётких множеств является применение теории планирования эксперимента, которая основывается на проведении экспертного опроса, планируемого предварительно. Эксперту представляется уже определенный набор значений входных лингвистических переменных, при помощи которых им [экспертом] и проводится оценка [25].

Этапы проведения эксперимента: определение цели работ; подбор участников (экспертов); процедура опроса экспертов, в ходе которой заполняются соответствующие анкеты; процедура обработки полученных в ходе опроса данных с их последующим обобщением; заполнение базы данных на основе полученных экспертных оценок с последующей обработкой этих данных в соответствующем программном средстве и получением итоговой оценки (рис. 5).



**Рис. 5.** Последовательность этапов формирования экспертных оценок

Появляется возможность выявления проблемных сторон анализируемой ситуации. При этом ключевое значение в выведении итоговой оценки ресурсного потенциала сферы сельскохозяйственного производства имеют продукционные правила логического вывода. В частности, продукционные правила представлены на рис. 6.

На основе продукционных правил (правила могут изменяться и дополняться) и посредством перебора множества оценок факторов (элементов) ресурсного потенциала экспертная система проводит оценку.

Обобщенная оценка ресурсного потенциала получена в виде отметок «низкий», «средний», «высокий», которые, при помощи процедуры дефазификации, интерпретируется в количественные.

 $\Pi_1$ : если  $U_1$  – высокий и  $U_2$  – высокий и  $U_3$  – высокий и  $U_4$  – средний и  $U_5$ средний и  $U_6$  – высокий и  $U_7$  – высокий, то ресурсный потенциал высокий;  $\Pi_2$ : если  $U_1$  – высокий и  $U_2$  – средний и  $U_3$  – высокий и  $U_4$  – средний и  $U_5$ – высокий и  $U_6$  – высокий и  $U_7$  – средний, то ресурсный потенциал высокий;  $\Pi_3$ : если  $U_1$  – высокий и  $U_2$  – высокий и  $U_3$  – средний и  $U_4$  – средний и  $U_5$  – высокий и  $U_6$  – средний и  $U_7$  – высокий, то ресурсный потенциал высокий;  $\Pi_4$ : если  $U_1$  – высокий и  $U_2$  – высокий и  $U_3$  – средний и  $U_4$  – средний и  $U_5$  – средний и  $U_6$  – средний и  $U_7$  – высокий, то ресурсный потенциал *средний*;  $\Pi_5$ : если  $U_1$  – высокий и  $U_2$  – средний и  $U_3$  – средний и  $U_4$  – средний и  $U_5$  – средний и  $U_6$  – средний и  $U_7$  – средний, то ресурсный потенциал *средний*;  $\Pi_6$ : если  $U_1$  – высокий и  $U_2$  – высокий и  $U_3$  – высокий и  $U_4$  – низкий и  $U_5$  – средний и  $U_6$  – средний и  $U_7$  – средний, то ресурсный потенциал *средний*;  $\Pi_7$ : если  $U_1$  – средний и  $U_2$  – средний и  $U_3$  – низкий и  $U_4$  – низкий и  $U_5$  – низкий и  $U_6$  – низкий, и  $U_7$  – средний, то ресурсный потенциал низкий;  $\Pi_8$ : если  $U_1$  – высокий и  $U_2$  – низкий и  $U_3$  – низкий и  $U_4$  – низкий и  $U_5$  – низкий и  $U_6$  – средний, и  $U_7$  – низкий, то ресурсный потенциал низкий;  $\Pi_9$ : если  $U_1$  – средний и  $U_2$  – средний и  $U_3$  – средний и  $U_4$  – низкий и  $U_5$  – низкий и  $U_6$  – низкий, и  $U_7$  – низкий, то ресурсный потенциал низкий.

Рис. 6. Продукционные правила итоговой оценки ресурсного потенциала

Выводы. В формировании стратегии развития экономики инновационного типа в условиях неопределенности всегда значимую роль играли и играют методы принятия управленческих решений. А в условиях высокой неопределённости особое значение приобретает способность принимать обоснованные управленческие решения на основе неполной и неоднородной (нечёткой) информации, что становится возможным с разра-

боткой и применением методологий и инструментов, которые позволяют это делать, учитывая множество разных факторов, переводя их из качественного в количественное измерение и создавая комплексный подход к оценке ресурсного потенциала региона. Такой подход позволяет повысить эффективность стратегического планирования и устойчивость социально-экономических систем территорий.

## Литература

- Воронцова М.А., Исаева А.Г., Красников А.В. Оценка инновационной активности промышленных предприятий региона в условиях структурных преобразований национальной экономики // Baikal Research Journal. – 2023. – Т. 14. – № 1. – С. 130–140.
- 2. Глазьев С.Ю. Теория долгосрочного технико-экономического развития. М., 1993. С. 55–70.
- Тегта Inkognita. Большая книга разговоров о будущем с ведущими экономистами мира. Росконгресс. Пространство доверия. – ООО «Рекламное агентство Медиакрат», 2024. – С. 105.
- 4. Фоломьев А.Н. Инновационный тип развития и предпринимательство. Сб. тр. Экономика предпринимательства. М. Гуманит. Изд. Центр Владос. 2001. С. 72.
- 5. Вихорев В.Г., Девятова Н.С., Вихорева М.В. Барьеры на пути развития инноваций в России // Baikal Research Journal. 2012. № 1. С. 31.
- Государственное регулирование рыночной экономики: федеральный, региональный и муниципальный уровень // Вопросы теории и практики. – М., 1998.
- 7. Твисс Б. Управление научно-техническими нововведениями. Сокр. пер. с англ. М.,1989.

- 8. Фоломьев А.Н., Гейгер Э.А. Менеджмент инноваций. Теория и практика. – М., 1997.
- Экономическая устойчивость и инвестиционная активность хозяйственных систем. М., 1996.
- 10. Заде Л. Понятие лингвистической переменной и его применение для принятия приближенных решений. М. : Мир, 1976. 165 с.
- 11. Кофман А. Введение в теорию нечётких множеств. М. : Радио и связь, 1982.-432 с.
- 12. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. М., Го-рячая линия Телеком, 2001. 382 с.
- Ларичев О.И., Мошкович Е.М. Качественные методы принятия решений: Вербальный анализ решений. – М., Наука; Физматлит, 1996. –и207 с.
- Мелихов А.Н., Бернштейн Л.С., Коровин С.Л. Ситуационные советующие системы с нечёткой логикой. – М. Наука. 1990. 272 с.
- Заде Л. Основы нового подхода к анализу сложных систем и процессов принятия решений. — М. Знание. 1974. С. 5–48.

- 16. Жуковин В.Е. Нечёткие многокритериальные задачи принятия решений // Известия АН СССР. Сер. «Техническая кибернетика» 1986. № 2 С. 129 133.
- Ларичев О. И. Наука и искусство принятия решений. М.: Наука, 1979.
- Шапиро Д.И. Принятие решений в системах организационного управления: Использование расплывчатых категорий. – М.: Энергоиздат, 1983.
- Zadeh L.A. Outline of a new approach to the analysis of complex sisterns and decision process-es // IEEE transactions syst., man, cybern. 1973. Vol. 3, Jan. P. 28–44.
- Zadeh L.A. Quantitative fuzzy zemantics // Inform. sciences. 1971. Vol. 3, Jan. – P. 94–102.
- Авдеева Е.С., Чернов В.Г. Нечёткие модели оценки рисков проекта внедрения корпоративной информационной системы на предприятии // Известия Байкальского государственного университета. – 2011. – № 6 (80). – С. 207–211.
- 22. Самаруха В.И. Финансирование формирования человеческого капитала в муниципальных образовательных системах / В.И. Самаруха, Ю.А. Скоробогатова. Иркутск: изд-во БГУЭП, 2009. 436 с.
- Круглов В.В. Интеллектуальные информационные системы: компьютерная поддержка систем нечёткой логики и нечёткого вывода / В.В. Круглов, М.И. Дли // Изд-во: Физматлит. М., 2002. 156 с.
- 24. Шуплецов А.Ф., Бавдик Т.П., Безвербная М.Ю. Механизм управления хозяйствующими субъектами малого бизнеса в условиях несостоятельности / под ред. А.Ф. Шуплецова. Иркутск: изд-во БГУЭП, 2008. 246 с.
- 25. Латышева М.А. Формирование организационно-экономического механизма освоения малоэффективных золотоносных россыпей Забайкальского края: дис. канд. наук. Иркутск, 2018. 191 с.

## References

- Vorontsova M.A., Isaeva A.G., Krasnikov A.V. Assessment of innovative activity of industrial enterprises of the region in the context of structural transformations of the national economy // Baikal Research Journal. – 2023. – Vol. 14. – No. 1. – P. 130–140.
- Glazyev S.Y. Theory of long-term technical and economic development. Moscow, 1993. – pp. 55–70.
- Terra Incognita. A great book of conversations about the future with the world's leading economists. The congress was growing. A space of trust. OOO "Advertising agency Mediakrat". 2024. p. 105.
- Folomiev A.N. Innovative type of development and entrepreneurship. Collection of tr. Economics of entrepreneurship. M. Humanit. Ed. Center Vlados. 2001. – P. 72.
- Vikhorev V.G., Devyatova N.S., Vikhoreva M.V. Barriers to Innovation Development in Russia // Baikal Research Journal. – 2012. – No. 1. – P. 31.

- State regulation of the market economy: federal, regional and municipal level // Questions of theory and practice. Moscow, 1998
- 7. Twiss B. Management of scientific and technical innovations. Translated from English, M. 1989.
- 8. Folomiev A.N., Geiger E.A. Innovation management. Theory and Practice, M. 1997.
- Economic stability and investment activity of economic systems. M. 1996.
- 10. Zadeh L. The concept of a linguistic variable and its application for making approximate decisions. M.: Mir. 1976. 165 p.
- 11. Kofman A. Introduction to the theory of fuzzy sets. Moscow: Radio and Communications, 1982. 432 p.
- 12. Kruglov V.V., Borisov V.V. Artificial neural networks. Theory and practice. M. Hotline Telecom, 2001. 382 p.
- Larichev O.I., Moshkovich E.M. Qualitative methods of decision–making: Verbal analysis of decisions. M.: Nauka. Physical education department. – 1996. – 207 p.
- Melikhov A.N., Bernstein L.S., Korovin S.L. Situational advisory systems with fuzzy logic. M.: Nauka, 1990. 272 p.
- Zadeh L. Fundamentals of a new approach to the analysis of complex systems and decision-making processes. – M. Znanie, 1974. – pp. 5–48.
- 16. Zhukovin V.E. Fuzzy multi-criteria decision-making tasks // Izvestiya AN SSSR. Ser. "Technical cybernetics". – 1986. – № 2 – S. 129 – 133.
- Larichev O.I. Science and the art of decision-making. M.: Nauka. 1979.
- 18. Shapiro D.I. Decision-making in organizational management systems: The use of vague categories. Energoizdat. 1983.
- 19. Zadeh L.A. Outline of a new approach to the analysis of complex systems and decision processes // IEEE transactions syst., man, cybern. 1973. Vol. 3, Jan. P. 28–44.
- 20. Zadeh L.A. Quantitative fuzzy zemantics // Inform. sciences. 1971. Vol. 3. Jan. P. 94–102.
- 21. Avdeeva E.S., Chernov V.G. Fuzzy models for assessing the risks of a project to implement a corporate information system at an enterprise // Bulletin of the Baikal State University. 2011. No. 6 (80). P. 207–211.
- 22. Samarukha V.I., Skorobogatova Yu.A. Financing the formation of human capital in municipal educational systems. Irkutsk: Publishing house of BSUEP. 2009. 436 p.
- Kruglov V.V. Intelligent information systems: computer support for fuzzy logic and fuzzy inference systems / V.V. Kruglov, M.I. Dli // Publishing house: Fizmatlit. – Moscow, 2002. – 156 p.
- 24. Shupletsov A.F., Bavdik T.P., Bezverbnaya M.Yu. The mechanism of management of small business entities in conditions of insolvency / ed. by A.F. Shupletsov. Irkutsk. BSUEP Publishing house. 2008. 246 p.
- 25. Latysheva M.A. Formation of an organizational and economic mechanism for the development of inefficient gold–bearing placers in the Trans-Baikal Territory: dis. kan. nauk. – Irkutsk. – 2018. – 191 p.